Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Entrenamiento en elasticidad ayuda a la IA a diagnosticar el cáncer de mama

Por el equipo editorial de MedImaging en español
Actualizado el 31 Jul 2019
Según un estudio nuevo, se pueden usar algoritmos de inteligencia artificial (IA) para identificar la heterogeneidad elástica de ultrasonido de un tumor, con el fin de diferenciar los tumores benignos de sus contrapartes malignas.

Investigadores de la Universidad del Sur de California (USC; Los Ángeles, EUA), del Instituto Politécnico Rensselaer (RPI; Troy, Nueva York, EUA) y de otras instituciones, crearon modelos basados en la física que simulaban los niveles variables de las dos propiedades clave de ultrasonido de un tumor de mama canceroso: heterogeneidad elástica y respuesta elástica no lineal. Luego utilizaron miles de entradas de datos derivadas de los modelos para entrenar una red neuronal convolucional (RNC) profunda para clasificar los tumores como malignos o benignos.

Se entrenó una RNC de 5 capas con 8.000 muestras para heterogeneidad, y una RNC de 4 capas con 4.000 muestras para la elasticidad no lineal. Cuando se consultó sobre imágenes sintéticas adicionales, las RNC lograron exactitudes de clasificación de 99,7% a 99,9%. Luego, los investigadores aplicaron el clasificador de elasticidad no lineal, que se entrenó completamente utilizando datos simulados, para clasificar las imágenes de desplazamiento obtenidas de diez pacientes con lesiones mamarias; la RNC clasificó correctamente ocho de cada diez casos.

“El consenso general es que estos tipos de algoritmos tienen un papel importante que desempeñar, incluso de los profesionales de imágenes sobre los que tendrán más impacto”, dijo el autor principal, el profesor, Assad Oberai, PhD, del departamento de ingeniería mecánica y aeroespacial de la USC. “Sin embargo, estos algoritmos serán más útiles cuando no sirven como cajas negras, sino que son una herramienta que ayuda a guiar a los radiólogos a conclusiones más exactas”.

La elastografía se basa en la generación de ondas de corte determinadas por el desplazamiento de los tejidos, inducido por la fuerza de un haz de ultrasonido enfocado o por una presión externa. Las ondas de corte son ondas laterales, con un movimiento perpendicular a la dirección de la fuerza generadora, que viajan lentamente y son atenuadas rápidamente por el tejido. La velocidad de propagación de las ondas de corte se correlaciona con la elasticidad del tejido.

Enlace relacionado:
Universidad del Sur de California
Instituto Politécnico Rensselaer



Wall Fixtures
MRI SERIES
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Digital Radiographic System
OMNERA 300M
New
MRI Infusion Workstation
BeneFusion MRI Station
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

RM

ver canal
Imagen: Comparación que muestra exploraciones 3T y 7T para el mismo participante (foto cortesía de P Simon Jones/University of Cambridge)

Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento

Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más

Medicina Nuclear

ver canal
Imágenes PET/TC con 68Ga-FZ-NR-1 e imágenes PET/TC y PET/RM con 18F-FDG en pacientes representativos con TNBC con nectina-4 positiva (foto cortesía del Journal of Nuclear Medicine)

Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo

El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.