Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas

Por el equipo editorial de MedImaging en español
Actualizado el 05 Feb 2025
Print article
Imagen: Ejemplos de segmentación clínica y de modelos (Foto cortesía de Radiology, DOI:10.1148/radiol.233029)
Imagen: Ejemplos de segmentación clínica y de modelos (Foto cortesía de Radiology, DOI:10.1148/radiol.233029)

El cáncer de pulmón es el segundo cáncer más común en los Estados Unidos y la principal causa de muerte relacionada con el cáncer. Detectar y segmentar con precisión los tumores de pulmón en las tomografías computarizadas (TC) es esencial para monitorear la progresión, evaluar el tratamiento y planificar la radioterapia. Actualmente, este proceso es realizado manualmente por los médicos, lo que supone una gran carga de trabajo y está sujeto a variabilidad entre especialistas.

Si bien se han aplicado métodos de aprendizaje profundo de IA a la detección y segmentación de tumores, los estudios anteriores se han visto limitados por pequeños conjuntos de datos, entradas manuales y un enfoque en tumores individuales. Estas limitaciones resaltan la necesidad de modelos que puedan proporcionar una delineación sólida y automatizada de tumores en varios entornos clínicos. Ahora, un nuevo estudio publicado en la revista Radiology ha demostrado el potencial de un modelo de aprendizaje profundo capaz de detectar y segmentar con precisión los tumores pulmonares, lo que podría impactar positivamente el tratamiento del cáncer de pulmón.

En este estudio, investigadores de la Facultad de Medicina de la Universidad de Stanford (Stanford, CA, EUA) utilizaron un conjunto de datos a gran escala de TC de rutina previas al tratamiento con radiación para desarrollar un modelo de detección y segmentación de tumores pulmonares con un nivel cercano al de los expertos. Su objetivo era crear un modelo capaz de identificar y segmentar tumores pulmonares en diferentes centros médicos. El equipo utilizó un modelo de aprendizaje profundo U-Net 3D entrenado en 1504 escaneos de TC que incluían 1,828 tumores segmentados, y lo evaluó en 150 escaneos adicionales. Las predicciones del modelo se compararon con volúmenes tumorales delineados por médicos. Se calcularon métricas de rendimiento clave, como sensibilidad, especificidad, tasa de falsos positivos y coeficiente de similitud de Dice (DSC), para evaluar la precisión del modelo. El modelo logró una sensibilidad del 92 % y una especificidad del 82 % en la detección de tumores pulmonares. Para las tomografías con un solo tumor, la mediana del DSC modelo-médico fue de 0,77 y la del DSC médico-médico fue de 0,80. El modelo también funcionó más rápido que los médicos.

Los investigadores creen que la arquitectura 3D U-Net ofrece ventajas sobre los modelos 2D al capturar información entre cortes, lo que ayuda a identificar lesiones más pequeñas que pueden confundirse con otras estructuras. Sin embargo, el modelo tendía a subestimar el volumen del tumor, especialmente en el caso de tumores más grandes, lo que podría afectar el rendimiento. Los investigadores recomiendan integrar este modelo en un flujo de trabajo supervisado por médicos para permitir que los médicos validen y corrijan cualquier lesión mal identificada. También sugieren que se realicen investigaciones futuras para evaluar cómo se puede aplicar el modelo para evaluar la carga tumoral pulmonar general y las respuestas al tratamiento a lo largo del tiempo. Además, proponen explorar si el modelo puede predecir resultados clínicos en combinación con otros modelos pronósticos.

"Hasta donde sabemos, nuestro conjunto de datos de entrenamiento es la mayor colección de tomografías computarizadas y segmentaciones de tumores clínicos de la literatura para construir un modelo de detección y segmentación de tumores pulmonares", afirmó el autor principal del estudio, el Dr. Mehr Kashyap. "Nuestro estudio representa un paso importante hacia la automatización de la identificación y segmentación de tumores pulmonares. Este enfoque podría tener amplias implicaciones, incluida su incorporación en la planificación automatizada del tratamiento, la cuantificación de la carga tumoral, la evaluación de la respuesta al tratamiento y otras aplicaciones radiómicas".

Enlaces relacionados:
Facultad de Medicina de la Universidad de Stanford

LED-Based X-Ray Viewer
Dixion X-View
Wall Fixtures
MRI SERIES
Radiology Software
DxWorks
3T MRI Scanner
MAGNETOM Cima.X

Print article

Canales

Radiografía

ver canal
Imagen:Los gráficos ilustran cómo se ven las imágenes 3D con XACT con ejemplos del logotipo de la UC a la izquierda y una muestra de hueso a la derecha (foto cortesía de la Escuela de Medicina de UCI)

Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación

La tomografía computarizada (TC) ha sido durante mucho tiempo una herramienta esencial en la obtención de imágenes modernas, ya que ofrece vistas 3D detalladas del cuerpo humano y otros materiales.... Más

Ultrasonido

ver canal
Imagen: Mapas de calor que la IA evaluó para realizar diagnósticos de enfermedades pulmonares (Foto cortesía de COVIDx-US)

IA diagnostica enfermedades pulmonares a partir de ecografías con una precisión del 96.57%

La inteligencia artificial (IA) tiene el potencial de convertirse en una herramienta crucial para los radiólogos, con avances recientes que le permiten diagnosticar con precisión neumonía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.