Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un programa tipo Tetris podría acelerar la detección del cáncer de mama

Por el equipo editorial de MedImaging en español
Actualizado el 03 Oct 2018
Print article
Imagen: Cultivo tridimensional de células de cáncer de mama humano, con el ADN coloreado de azul y una proteína en la membrana de la superficie celular de color verde (Fotografía cortesía de Tom Misteli, Ph.D., y de Karen Meaburn, Ph.D/NIH IRP) .
Imagen: Cultivo tridimensional de células de cáncer de mama humano, con el ADN coloreado de azul y una proteína en la membrana de la superficie celular de color verde (Fotografía cortesía de Tom Misteli, Ph.D., y de Karen Meaburn, Ph.D/NIH IRP) .
Los investigadores del Instituto Australiano de Aprendizaje Automático de la Universidad de Adelaida (Adelaida, Australia Meridional, Australia) desarrollan un programa de análisis de imágenes médicas, completamente automatizado, para detectar tumores de mama que utiliza un estilo único para centrarse en el área afectada. Usando la inteligencia artificial (IA), el programa autónomo junto con un examen de resonancia magnética emplea el movimiento transversal y el estilo de un antiguo videojuego para examinar el área de la mama.

El programa se creó aplicando métodos de aprendizaje de refuerzo profundo, una forma de IA que permite a las computadoras y máquinas aprender a realizar tareas complejas sin ser programadas por humanos. Esto permite que el programa analice de forma independiente el tejido mamario. Los investigadores lograron entrenar el programa de computadora utilizando una cantidad relativamente menor de datos, lo que plantea un desafío crítico en las imágenes médicas.

"Así como el antiguo videojuego Tetris manipuló las formas geométricas para adaptarse a un espacio, este programa usa un cuadrado verde para navegar y buscar sobre la imagen del seno para localizar las lesiones. El cuadrado cambia a rojo si se detecta una lesión", dijo el candidato a doctorado de la Universidad de Adelaida, Gabriel Maicas Suso. "Nuestra investigación muestra que este método único es 1,78 veces más rápido para encontrar una lesión que los métodos existentes para detectar el cáncer de mama, y los resultados son igual de exactos".

"Al incorporar el aprendizaje automático en el análisis de imágenes médicas, hemos desarrollado un programa que localiza las lesiones de forma intuitiva y rápida", dijo el Profesor Asociado, Gustavo Carneiro del AIML. "Se necesita más investigación antes de que el programa se pueda usar clínicamente. Nuestro objetivo final es que los radiólogos utilicen este método de detección para complementar, respaldar y ayudar a su importante trabajo de hacer un pronóstico preciso y rápido. La IA tiene un papel importante que jugar en el campo de la imagenología médica; el potencial para usar la inteligencia artificial en este campo no tiene límites".

Enlace relacionado:
Instituto Australiano de Aprendizaje Automático de la Universidad de Adelaida

Miembro Plata
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform
Ultrasound Scanner
TBP-5533
New
X-ray Diagnostic System
FDX Visionary-A
New
Portable HF X-Ray Machine
PORTX

Print article

Canales

Radiografía

ver canal
Imagen:Los gráficos ilustran cómo se ven las imágenes 3D con XACT con ejemplos del logotipo de la UC a la izquierda y una muestra de hueso a la derecha (foto cortesía de la Escuela de Medicina de UCI)

Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación

La tomografía computarizada (TC) ha sido durante mucho tiempo una herramienta esencial en la obtención de imágenes modernas, ya que ofrece vistas 3D detalladas del cuerpo humano y otros materiales.... Más

Ultrasonido

ver canal
Imagen: La incorporación de la ecografía POC puede mejorar la atención obstétrica en el primer trimestre (cortesía de la foto de 123RF)

Ecografía POC mejora la atención en las primeras etapas del embarazo y reduce las visitas a urgencias

Un nuevo estudio ha descubierto que la implementación de ultrasonidos en el punto de atención (POCUS) en clínicas para evaluar la viabilidad y la edad gestacional de los embarazos... Más

Medicina Nuclear

ver canal
Imagen: La combinación de imágenes avanzadas permitió a los investigadores determinar las regiones metabólicamente más activas o agresivas del glioblastoma (Foto cortesía de Mayo Clinic)

Una combinación de tecnologías de imágenes avanzadas ofrece un avance en el tratamiento del glioblastoma

El glioblastoma es la forma más mortal de cáncer cerebral primario, en gran medida debido a su crecimiento agresivo y su resistencia al tratamiento. El tumor se infiltra en el tejido cerebral... Más

Imaginología General

ver canal
Imagen: Los métodos automatizados permiten el análisis de exploraciones PET/CT (izquierda) para predecir con precisión la ubicación y el tamaño del tumor (derecha)(Foto cortesía de Nature Machine Intelligence, 2024. DOI: 10.1038/S42256-024-00912-9)

Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC

Las técnicas de diagnóstico por imágenes son esenciales para el diagnóstico del cáncer, ya que determinar con precisión la ubicación, el tamaño y el tipo de tumores es fundamental para seleccionar el tratamiento... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.