Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo para identificar las lesiones mamarias

Por el equipo editorial de MedImaging en español
Actualizado el 01 Nov 2017
Print article
Imagen: El diagrama de dispersión muestra la puntuación del modelo de aprendizaje automático en comparación con un número aleatorio en el conjunto de prueba independiente (Fotografía cortesía de la RSNA).
Imagen: El diagrama de dispersión muestra la puntuación del modelo de aprendizaje automático en comparación con un número aleatorio en el conjunto de prueba independiente (Fotografía cortesía de la RSNA).
Los investigadores han entrenado una herramienta de aprendizaje automático para identificar lesiones de cáncer de mama de alto riesgo diagnosticadas con biopsia que tienen poca probabilidad de volverse cancerosas y, por lo tanto, no requieren una cirugía inmediata.
 
El modelo mostró una exactitud del 97% en sus predicciones y podría ayudar a reducir las cirugías de cáncer de mama innecesarias en un 33%. Las lesiones de alto riesgo tienen un mayor riesgo de convertirse en cáncer, pero muchas de estas lesiones se pueden seguir, de manera segura, usando imágenes, sin requerir cirugía.
 
El estudio fue publicado en línea en la edición de octubre de 2017 de la revista Radiology por investigadores del Instituto Tecnológico de Massachusetts (MIT, Boston, MA, EUA) y del Hospital General de Massachusetts (MGH; Boston, MA, EUA). La herramienta de aprendizaje automático permitió a los investigadores encontrar aquellas lesiones de alto riesgo que tienen un riesgo bajo de subir a cáncer.
 
El modelo tuvo en cuenta la edad de la paciente, la histología de la lesión y otros factores de riesgo estándar, pero también incluyó las palabras clave de los informes de patología de la biopsia. Los investigadores entrenaron el modelo utilizando pacientes con lesiones de alto riesgo comprobadas por biopsia. Después de entrenar el modelo en dos tercios de las lesiones de alto riesgo, los investigadores descubrieron que pudieron identificar el 97% de las lesiones que se volvieron cáncer. Los investigadores también encontraron que al usar el modelo podían ayudar a evitar casi un tercio de las cirugías de tumores benignos.
 
El autor del estudio, el radiólogo Manisha Bahl, MD, MPH, del MGH y de la Facultad de Medicina de Harvard, dijo: “Existen diferentes tipos de lesiones de alto riesgo. La mayoría de las instituciones recomiendan la escisión quirúrgica para lesiones de alto riesgo como la hiperplasia ductal atípica. para los que el riesgo de subir a cáncer es de aproximadamente el 20%. Para otros tipos de lesiones de alto riesgo, el riesgo de volverse cáncer varía bastante en la literatura y el manejo de la paciente, incluida la decisión sobre si extirpar o examinar la lesión, varía según las prácticas. Nuestro objetivo es aplicar la herramienta en la clínica”.
 
New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Digital Radiographic System
OMNERA 300M
New
Mobile Barrier
Tilted Mobile Leaded Barrier
LED-Based X-Ray Viewer
Dixion X-View

Print article
Radcal

Canales

Radiografía

ver canal
Imagen: El nuevo detector de rayos X produce una radiografía de alta calidad (foto cortesía de ACS Central Science 2024, https://doi.org/10.1021/acscentsci.4c01296)

Detector altamente sensible y plegable hace que la radiografía sea más segura

Los rayos X se utilizan ampliamente en pruebas de diagnóstico y monitoreo industrial, desde controles dentales hasta escaneos de equipaje en aeropuertos. Sin embargo, estos rayos de alta energía... Más

RM

ver canal
Imagen: Imágenes por RM antígeno de membrana específico de próstata, PET-CT, y tinción con hematoxilina y eosina de tres casos representativos (foto cortesía del profesor Nianzeng Xing. Doi: 10.1097/cm9.0000000000003204)

Combinación de técnicas de imagen permitiría extirpar el cáncer de próstata sin biopsia

El cáncer de próstata es uno de los cánceres más frecuentes en los hombres. Tradicionalmente, el cáncer de próstata se diagnostica mediante una biopsia, en la que se obtiene una pequeña muestra de tejido... Más

Ultrasonido

ver canal
Imagen: un prototipo del dispositivo desarrollado (foto cortesía de KTU)

Dispositivo de ultrasonido mejora de forma no invasiva la circulación sanguínea en las extremidades inferiores

La circulación sanguínea deficiente en las extremidades inferiores es un problema de salud común entre los ancianos y es una complicación significativa de la diabetes, a menudo... Más

Medicina Nuclear

ver canal
Imagen: Ejemplo de análisis de IA de imágenes PET/TC (foto cortesía de Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

Análisis de IA de imágenes PET/TC predice efectos secundarios de la inmunoterapia en cáncer de pulmón

La inmunoterapia ha avanzado significativamente en el tratamiento del cáncer de pulmón primario, pero a veces puede provocar un efecto secundario grave conocido como enfermedad pulmonar intersticial.... Más

Imaginología General

ver canal
Imagen: Cleerly ofrece una solución CCTA habilitada para AI para una evaluación personalizada, precisa y medible de placa, estenosis e isquemia (foto cortesía de Cleerly)

Evaluaciones de placas habilitadas por IA ayudan a cardiólogos a identificar a pacientes con EAC de alto riesgo

Una investigación pionera ha demostrado que un análisis no invasivo basado en inteligencia artificial (IA) de la tomografía computarizada (TC) cardíaca puede predecir eventos cardíacos graves en pacientes... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.