Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




La IA mejora la identificación mediante rayos X de los marcapasos

Por el equipo editorial de MedImaging en español
Actualizado el 16 Apr 2019
Print article
Según un estudio nuevo, el software de inteligencia artificial (IA) puede ayudar a determinar la marca y el modelo de los dispositivos de ritmo cardíaco (DRC) implantados con mayor exactitud y rapidez que los métodos actuales.

El software, desarrollado en el Colegio Imperial de Londres (Imperial; Reino Unido), ayudará al personal de emergencia a eliminar los enfoques actuales para determinar el modelo de un marcapasos o desfibrilador, que implican comparar la apariencia radiográfica de un DRC con un diagrama de flujo manual. Para el estudio, los investigadores extrajeron las imágenes radiográficas de 45 modelos de DRC de cinco fabricantes. Luego desarrollaron una red neuronal convolucional (CNN) usando un conjunto de entrenamiento de 1.451 imágenes. La CNN luego se ensayó en un conjunto que contenía 225 imágenes adicionales, que consta de cinco ejemplos de cada modelo.

La capacidad de la red para identificar al fabricante de un dispositivo se comparó con la de los cardiólogos que utilizaron un diagrama de flujo. Los resultados mostraron que la CNN tenía una exactitud del 99,6% en la identificación del fabricante de un dispositivo y una exactitud del 96,4% en la identificación del grupo del modelo. Entre los cinco cardiólogos que utilizaron el diagrama de flujo, la identificación mediana de la exactitud del fabricante fue del 72%, y la identificación del grupo de modelo no fue posible. El estudio fue publicado el 27 de marzo de 2019 en la revista JACC: Clinical Electrophysiology.

“Los marcapasos y los desfibriladores han mejorado la vida de millones de pacientes. Sin embargo, en algunos casos raros, estos dispositivos pueden fallar y los pacientes se pueden deteriorar como resultado. En estas situaciones, los médicos deben identificar rápidamente el tipo de dispositivo que tiene un paciente para que puedan brindar tratamiento, como cambiar la configuración del dispositivo o reemplazar los cables”, dijo el autor principal James Howard, MD. “Desafortunadamente, los métodos existentes son lentos y desactualizados y hay una necesidad real de encontrar nuevas y mejores formas de identificar los dispositivos en situaciones de emergencia”.

La CNN utiliza una cascada de muchas capas de unidades de procesamiento no lineales para la extracción y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.

Enlace relacionado:
Colegio Imperial de Londres

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
DRF DR & Remote Fluoroscopy Solution
CombiDiagnost R90
LED-Based X-Ray Viewer
Dixion X-View
New
40/80-Slice CT System
uCT 528

Print article

Canales

Radiografía

ver canal
Imagen: El nuevo detector de rayos X produce una radiografía de alta calidad (foto cortesía de ACS Central Science 2024, https://doi.org/10.1021/acscentsci.4c01296)

Detector altamente sensible y plegable hace que la radiografía sea más segura

Los rayos X se utilizan ampliamente en pruebas de diagnóstico y monitoreo industrial, desde controles dentales hasta escaneos de equipaje en aeropuertos. Sin embargo, estos rayos de alta energía... Más

RM

ver canal
Imagen: El modelo de aprendizaje profundo puede ayudar a clasificar 12 tipos comunes de anomalías de la rodilla (foto cortesía de 123RF)

Modelo de aprendizaje profundo diagnostica anomalías en la rodilla como un radiólogo experimentado

La articulación de la rodilla, una articulación en bisagra compleja, es una de las principales articulaciones de soporte de peso en el cuerpo humano y facilita los diversos movimientos necesarios... Más

Medicina Nuclear

ver canal
Imagen: Ejemplo de análisis de IA de imágenes PET/TC (foto cortesía de Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

Análisis de IA de imágenes PET/TC predice efectos secundarios de la inmunoterapia en cáncer de pulmón

La inmunoterapia ha avanzado significativamente en el tratamiento del cáncer de pulmón primario, pero a veces puede provocar un efecto secundario grave conocido como enfermedad pulmonar intersticial.... Más

Imaginología General

ver canal
Imagen: Cleerly ofrece una solución CCTA habilitada para AI para una evaluación personalizada, precisa y medible de placa, estenosis e isquemia (foto cortesía de Cleerly)

Evaluaciones de placas habilitadas por IA ayudan a cardiólogos a identificar a pacientes con EAC de alto riesgo

Una investigación pionera ha demostrado que un análisis no invasivo basado en inteligencia artificial (IA) de la tomografía computarizada (TC) cardíaca puede predecir eventos cardíacos graves en pacientes... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.