Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Entrenamiento en elasticidad ayuda a la IA a diagnosticar el cáncer de mama

Por el equipo editorial de MedImaging en español
Actualizado el 31 Jul 2019
Print article
Según un estudio nuevo, se pueden usar algoritmos de inteligencia artificial (IA) para identificar la heterogeneidad elástica de ultrasonido de un tumor, con el fin de diferenciar los tumores benignos de sus contrapartes malignas.

Investigadores de la Universidad del Sur de California (USC; Los Ángeles, EUA), del Instituto Politécnico Rensselaer (RPI; Troy, Nueva York, EUA) y de otras instituciones, crearon modelos basados en la física que simulaban los niveles variables de las dos propiedades clave de ultrasonido de un tumor de mama canceroso: heterogeneidad elástica y respuesta elástica no lineal. Luego utilizaron miles de entradas de datos derivadas de los modelos para entrenar una red neuronal convolucional (RNC) profunda para clasificar los tumores como malignos o benignos.

Se entrenó una RNC de 5 capas con 8.000 muestras para heterogeneidad, y una RNC de 4 capas con 4.000 muestras para la elasticidad no lineal. Cuando se consultó sobre imágenes sintéticas adicionales, las RNC lograron exactitudes de clasificación de 99,7% a 99,9%. Luego, los investigadores aplicaron el clasificador de elasticidad no lineal, que se entrenó completamente utilizando datos simulados, para clasificar las imágenes de desplazamiento obtenidas de diez pacientes con lesiones mamarias; la RNC clasificó correctamente ocho de cada diez casos.

“El consenso general es que estos tipos de algoritmos tienen un papel importante que desempeñar, incluso de los profesionales de imágenes sobre los que tendrán más impacto”, dijo el autor principal, el profesor, Assad Oberai, PhD, del departamento de ingeniería mecánica y aeroespacial de la USC. “Sin embargo, estos algoritmos serán más útiles cuando no sirven como cajas negras, sino que son una herramienta que ayuda a guiar a los radiólogos a conclusiones más exactas”.

La elastografía se basa en la generación de ondas de corte determinadas por el desplazamiento de los tejidos, inducido por la fuerza de un haz de ultrasonido enfocado o por una presión externa. Las ondas de corte son ondas laterales, con un movimiento perpendicular a la dirección de la fuerza generadora, que viajan lentamente y son atenuadas rápidamente por el tejido. La velocidad de propagación de las ondas de corte se correlaciona con la elasticidad del tejido.

Enlace relacionado:
Universidad del Sur de California
Instituto Politécnico Rensselaer


New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Multi-Use Ultrasound Table
Clinton
New
Ultrasound Imaging System
P12 Elite
Ultra-Flat DR Detector
meX+1717SCC

Print article
Radcal

Canales

Radiografía

ver canal
Imagen: El nuevo detector de rayos X produce una radiografía de alta calidad (foto cortesía de ACS Central Science 2024, https://doi.org/10.1021/acscentsci.4c01296)

Detector altamente sensible y plegable hace que la radiografía sea más segura

Los rayos X se utilizan ampliamente en pruebas de diagnóstico y monitoreo industrial, desde controles dentales hasta escaneos de equipaje en aeropuertos. Sin embargo, estos rayos de alta energía... Más

RM

ver canal
Imagen: El Dr. Amar Kishan señala que el enfoque guiado por resonancia magnética permite el uso de márgenes de planificación significativamente más estrechos al entregar radiación (foto cortesía de UCLA)

La radioterapia guiada por RM reduce los efectos secundarios a largo plazo en pacientes con cáncer de próstata

La radioterapia corporal estereotáctica (SBRT, por sus siglas en inglés) es un tratamiento estándar para el cáncer de próstata localizado. Sin embargo, los efectos secundarios de este tratamiento pueden... Más

Medicina Nuclear

ver canal
Imagen: Ejemplo de análisis de IA de imágenes PET/TC (foto cortesía de Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

Análisis de IA de imágenes PET/TC predice efectos secundarios de la inmunoterapia en cáncer de pulmón

La inmunoterapia ha avanzado significativamente en el tratamiento del cáncer de pulmón primario, pero a veces puede provocar un efecto secundario grave conocido como enfermedad pulmonar intersticial.... Más

Imaginología General

ver canal
Imagen: Cleerly ofrece una solución CCTA habilitada para AI para una evaluación personalizada, precisa y medible de placa, estenosis e isquemia (foto cortesía de Cleerly)

Evaluaciones de placas habilitadas por IA ayudan a cardiólogos a identificar a pacientes con EAC de alto riesgo

Una investigación pionera ha demostrado que un análisis no invasivo basado en inteligencia artificial (IA) de la tomografía computarizada (TC) cardíaca puede predecir eventos cardíacos graves en pacientes... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.