Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA identifica rápidamente trastornos raros potencialmente mortales a partir de ecografías

Por el equipo editorial de MedImaging en español
Actualizado el 21 Jul 2022
Print article
Imagen: Los investigadores utilizaron la IA para diagnosticar el defecto de nacimiento en las imágenes de ultrasonido fetal (Fotografía cortesía de la Universidad de Ottawa)
Imagen: Los investigadores utilizaron la IA para diagnosticar el defecto de nacimiento en las imágenes de ultrasonido fetal (Fotografía cortesía de la Universidad de Ottawa)

El higroma quístico es una afección embrionaria que hace que el sistema vascular linfático se desarrolle de manera anormal. Es un trastorno raro y potencialmente mortal que conduce a la inflamación de líquido alrededor de la cabeza y el cuello. Por lo general, el defecto congénito se puede diagnosticar fácilmente antes del nacimiento durante una cita de ultrasonido. Ahora, un nuevo estudio ha demostrado que la arquitectura de aprendizaje profundo puede ayudar a identificar el higroma quístico a partir de las ecografías del primer trimestre.

En un nuevo estudio de prueba de concepto, los investigadores de la Universidad de Ottawa (Ontario, Canadá) son pioneros en el uso de un modelo único de aprendizaje profundo basado en inteligencia artificial como herramienta de asistencia para la lectura rápida y precisa de imágenes de ultrasonido. El objetivo del estudio del equipo era demostrar el potencial de la arquitectura de aprendizaje profundo para respaldar la identificación temprana y confiable del higroma quístico a partir de ecografías del primer trimestre. Los investigadores probaron qué tan bien el reconocimiento de patrones impulsado por IA podría diagnosticar el defecto de nacimiento prenatalmente mediante ultrasonografía.

"Lo que demostramos fue que en el campo del ultrasonido podemos usar las mismas herramientas para clasificar e identificar imágenes con una alta sensibilidad y especificidad", dijo el Dr. Mark Walker de la Facultad de Medicina de la Universidad de Ottawa, quien dirigió el estudio. y cree que el enfoque también podría aplicarse a otras anomalías fetales generalmente identificadas por ultrasonografía.

Enlaces relacionados:
Universidad de Ottawa  

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
Ultrasound Color LCD
U156W
New
X-ray Diagnostic System
FDX Visionary-A
New
Portable Color Doppler Ultrasound System
S5000

Print article
Radcal

Canales

Radiografía

ver canal
Imagen: El nuevo detector de rayos X produce una radiografía de alta calidad (foto cortesía de ACS Central Science 2024, https://doi.org/10.1021/acscentsci.4c01296)

Detector altamente sensible y plegable hace que la radiografía sea más segura

Los rayos X se utilizan ampliamente en pruebas de diagnóstico y monitoreo industrial, desde controles dentales hasta escaneos de equipaje en aeropuertos. Sin embargo, estos rayos de alta energía... Más

RM

ver canal
Imagen: Imágenes por RM antígeno de membrana específico de próstata, PET-CT, y tinción con hematoxilina y eosina de tres casos representativos (foto cortesía del profesor Nianzeng Xing. Doi: 10.1097/cm9.0000000000003204)

Combinación de técnicas de imagen permitiría extirpar el cáncer de próstata sin biopsia

El cáncer de próstata es uno de los cánceres más frecuentes en los hombres. Tradicionalmente, el cáncer de próstata se diagnostica mediante una biopsia, en la que se obtiene una pequeña muestra de tejido... Más

Medicina Nuclear

ver canal
Imagen: Ejemplo de análisis de IA de imágenes PET/TC (foto cortesía de Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

Análisis de IA de imágenes PET/TC predice efectos secundarios de la inmunoterapia en cáncer de pulmón

La inmunoterapia ha avanzado significativamente en el tratamiento del cáncer de pulmón primario, pero a veces puede provocar un efecto secundario grave conocido como enfermedad pulmonar intersticial.... Más

Imaginología General

ver canal
Imagen: Cleerly ofrece una solución CCTA habilitada para AI para una evaluación personalizada, precisa y medible de placa, estenosis e isquemia (foto cortesía de Cleerly)

Evaluaciones de placas habilitadas por IA ayudan a cardiólogos a identificar a pacientes con EAC de alto riesgo

Una investigación pionera ha demostrado que un análisis no invasivo basado en inteligencia artificial (IA) de la tomografía computarizada (TC) cardíaca puede predecir eventos cardíacos graves en pacientes... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.