Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Radiómica por TC ayuda a clasificar los nódulos pulmonares pequeños

Por el equipo editorial de MedImaging en español
Actualizado el 03 Feb 2021
Un algoritmo de aprendizaje automático (AA) puede ser muy exacto para clasificar los nódulos pulmonares muy pequeños que se encuentran en los programas de detección pulmonar por TC de dosis baja, según un estudio nuevo.

Investigadores del Centro de Investigación de Cáncer de la Columbia Británica (BCCRC; Vancouver, Canadá), entrenaron un algoritmo de AA de análisis discriminante lineal (LDA), utilizando datos del estudio Pancanadiense de Detección Temprana del Cáncer de Pulmón (PanCan) para caracterizar, analizar y clasificar nódulos pulmonares pequeños como malignos o benignos extrayendo aproximadamente 170 características radiómicas de textura y forma, siguiendo la segmentación de nódulos semiautomatizada en las imágenes. Luego compararon el desempeño del algoritmo con el de la calculadora de puntuación de riesgo de malignidad de próstata, pulmón, colorrectal y ovario (PLCO) m2012, en otro conjunto de datos.

La cohorte de estudio consistió en 139 nódulos malignos y 472 nódulos benignos que tenían aproximadamente el mismo tamaño. Los investigadores aplicaron restricciones de tamaño (basadas en los criterios de clasificación de Lung-RADS) para eliminar cualquier nódulo del conjunto de datos que ya se consideraría sospechoso, lo que incluiría cualquier nódulo con componentes sólidos de más de 8 mm de diámetro. Los resultados mostraron que el algoritmo de AA superó significativamente el modelo de predicción de riesgo (PLCO) m2012, especialmente cuando se agregaron datos demográficos al análisis radiómico. El estudio fue presentado en el Congreso Especial Virtual de la AACR sobre Inteligencia Artificial, Diagnóstico e Imagen, celebrado durante enero de 2021.

“Los mejores resultados se lograron en un subconjunto de pacientes menores de 64 años, mujeres, que no tenían enfisema, fumaban menos de 42 paquetes-año, no tenían antecedentes familiares de cáncer de pulmón y no eran fumadoras actuales”, dijo el autor principal y presentador del estudio, Rohan Abraham, PhD. “Combinado con el conocimiento y la experiencia de los médicos, esto tiene el potencial de permitir una intervención más temprana y reducir la necesidad de una TC de seguimiento”.

La clasificación actual de los nódulos pulmonares se basa en el tamaño del nódulo, un factor que es de uso limitado para los nódulos subcentimétricos, o en el tiempo de duplicación del volumen, una variable que requiere exámenes de TC de seguimiento. Como resultado, los nódulos pulmonares muy pequeños, con componentes sólidos de menos de 8 mm de diámetro (y, por lo tanto, por debajo del umbral de estratificación de riesgo Lung-RADS 4A), son muy difíciles de clasificar y, a menudo, se les da un plan de manejo de “esperar y ver”.

Enlace relacionado:
Centro de Investigación de Cáncer de la Columbia Británica


New
Ultrasound Needle Guide
Ultra-Pro 3
New
Prostate Cancer MRI Analysis Tool
DynaCAD Urology
Diagnostic Ultrasound System
MS1700C
Radiation Therapy Treatment Software Application
Elekta ONE
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

RM

ver canal
Imagen: Comparación que muestra exploraciones 3T y 7T para el mismo participante (foto cortesía de P Simon Jones/University of Cambridge)

Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento

Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más

Medicina Nuclear

ver canal
Imágenes PET/TC con 68Ga-FZ-NR-1 e imágenes PET/TC y PET/RM con 18F-FDG en pacientes representativos con TNBC con nectina-4 positiva (foto cortesía del Journal of Nuclear Medicine)

Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo

El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.