Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Método revolucionario basado en IA clasifica con precisión función y enfermedad cardíaca utilizando radiografías de tórax

Por el equipo editorial de MedImaging en español
Actualizado el 19 Jul 2023

La enfermedad cardíaca valvular, una de las principales causas de insuficiencia cardíaca, se diagnostica comúnmente mediante ecocardiografía. Sin embargo, esta técnica requiere experiencia especializada, lo que lleva a una escasez de técnicos competentes. La radiografía de tórax, por otro lado, es un método de diagnóstico ampliamente utilizado para identificar principalmente enfermedades pulmonares. Aunque el corazón es visible en las radiografías de tórax o en los rayos X de tórax, su potencial para detectar la función o enfermedad cardíaca ha sido en gran parte inexplorado hasta ahora. Dado su uso generalizado, rápida ejecución y alta reproducibilidad, las radiografías de tórax podrían servir como una herramienta complementaria a la ecocardiografía para diagnosticar afecciones cardíacas si pudieran determinar con precisión la función y la enfermedad cardíacas. Ahora, una innovadora herramienta de inteligencia artificial (IA) utiliza radiografías de tórax para clasificar las funciones cardíacas e identificar enfermedades cardíacas valvulares con una precisión sin precedentes.

Científicos de la Universidad Metropolitana de Osaka (Osaka, Japón) han desarrollado un modelo basado en IA capaz de clasificar con precisión las funciones cardíacas y diagnosticar enfermedades cardíacas valvulares utilizando radiografías de tórax. Dado el potencial de sesgo y la baja precisión resultante si la IA se entrena en un solo conjunto de datos, el equipo recopiló un conjunto de datos multiinstitucional que comprende 22.551 radiografías de tórax y ecocardiogramas correspondientes de 16.946 pacientes en cuatro instalaciones entre 2013 y 2021. El modelo de IA fue entrenado utilizando radiografías de tórax como datos de entrada y los ecocardiogramas correspondientes como datos de salida, lo que le permite aprender las características conectoras de los dos conjuntos de datos.

El modelo de IA fue exitoso en clasificar con precisión seis tipos seleccionados de cardiopatía valvular, con el área bajo la curva (AUC es un índice de calificación que indica la capacidad de un modelo de IA con un rango de valores de 0 a 1; cuanto más cerca de 1, mejor) que va de 0,83 a 0,92. El AUC fue de 0,92 con un límite del 40 % para detectar la fracción de eyección ventricular izquierda, una métrica esencial para monitorear la función cardíaca.

“Nos tomó mucho tiempo llegar a estos resultados, pero creo que esta es una investigación importante”, afirmó el Dr. Daiju Ueda de la Universidad Metropolitana de Osaka, quien dirigió el equipo de investigación. “Además de mejorar la eficiencia de los diagnósticos de los médicos, el sistema también podría usarse en áreas donde no hay especialistas, en emergencias en horario nocturno y para pacientes que tienen dificultades para someterse a una ecocardiografía”.

Enlaces relacionados:
Universidad Metropolitana de Osaka  

Miembro Plata
X-Ray QA Meter
T3 AD Pro
Ultrasonic Pocket Doppler
SD1
40/80-Slice CT System
uCT 528
New
Prostate Cancer MRI Analysis Tool
DynaCAD Urology
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

RM

ver canal
Imagen: Comparación que muestra exploraciones 3T y 7T para el mismo participante (foto cortesía de P Simon Jones/University of Cambridge)

Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento

Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más

Medicina Nuclear

ver canal
Imágenes PET/TC con 68Ga-FZ-NR-1 e imágenes PET/TC y PET/RM con 18F-FDG en pacientes representativos con TNBC con nectina-4 positiva (foto cortesía del Journal of Nuclear Medicine)

Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo

El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.