Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas

Por el equipo editorial de MedImaging en español
Actualizado el 18 Apr 2024

Se espera que el aumento de la población que envejece dé como resultado un aumento correspondiente en la prevalencia de fracturas vertebrales que pueden causar dolor de espalda o compromiso neurológico, lo que lleva a un deterioro de la función o discapacidad. Clínicamente, las fracturas vertebrales benignas y malignas no se distinguen porque normalmente ocurren sin un traumatismo adecuado. La tomografía computarizada desempeña un papel clave a la hora de distinguir entre fracturas vertebrales benignas y malignas debido a la amplia disponibilidad de la tecnología y su capacidad para representar líneas de fractura en diferentes planos reconstruidos. Sin embargo, distinguir entre fracturas vertebrales benignas y malignas sigue siendo un desafío con la TC sola. Ahora, un nuevo estudio ha demostrado que los modelos de aprendizaje profundo basados en TC pueden discriminar eficazmente las fracturas vertebrales benignas de las malignas. El estudio encontró que los modelos funcionaron mejor o similar que los residentes de radiología y tan buenos como los de un radiólogo capacitado.

En el estudio, investigadores de la Universidad Técnica de Múnich (TUM, Múnich, Alemania) examinaron si los modelos de aprendizaje profundo basados en TC podían diferenciar de forma fiable entre fracturas vertebrales benignas y malignas. El estudio identificó retrospectivamente tomografías computarizadas obtenidas entre junio de 2005 y diciembre de 2022 de pacientes con fracturas vertebrales benignas o malignas según un estándar de referencia compuesto que incluía información histopatológica y radiológica. Los investigadores seleccionaron al azar un conjunto de pruebas internas y obtuvieron un conjunto de pruebas externas de otro hospital.

Los modelos de aprendizaje profundo basados en CT utilizaron una arquitectura de codificador-clasificador tridimensional U-Net y aplicaron aumento de datos durante el entrenamiento. Los investigadores evaluaron el rendimiento de los modelos utilizando el área bajo la curva característica operativa del receptor (AUC) y lo compararon con el de dos residentes y un radiólogo capacitado utilizando la prueba DeLong. El estudio reveló que los modelos desarrollados tenían un alto poder discriminatorio para diferenciar entre fracturas vertebrales benignas y malignas. Su desempeño superó o igualó al de los residentes de radiología e igualó al de un radiólogo capacitado.

Enlaces relacionados:
tum

New
Mobile Cath Lab
Photon F65/F80
New
HF Stationary X-Ray Machine
TR20G
New
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Miembro Plata
X-Ray QA Meter
T3 AD Pro
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

RM

ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.