Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de IA reconstruye escáner 3D de TC de vista dispersa con una dosis de rayos X mucho más baja

Por el equipo editorial de MedImaging en español
Actualizado el 27 Dec 2024

Si bien las tomografías computarizadas en 3D proporcionan imágenes detalladas de las estructuras internas, las 1.000 a 2.000 radiografías capturadas desde diferentes ángulos durante la exploración pueden aumentar el riesgo de cáncer, especialmente para los pacientes vulnerables. Las tomografías computarizadas (TC) de vista dispersa, que utilizan menos proyecciones de rayos X (tan pocas como 100), reducen significativamente la exposición a la radiación, pero presentan desafíos para la reconstrucción precisa de imágenes.

Recientemente, las técnicas de aprendizaje supervisado, una forma de aprendizaje automático que entrena algoritmos con datos etiquetados, han mejorado la velocidad y la resolución de las reconstrucciones de imágenes de TC de vista dispersa y de resonancia magnética (RM) con muestras insuficientes. Sin embargo, etiquetar grandes conjuntos de datos de entrenamiento es un proceso que consume mucho tiempo y es costoso. Ahora, los investigadores han desarrollado un nuevo marco que funciona de manera eficiente con imágenes 3D, haciendo que el método sea más aplicable tanto para la TC como para la RM.

Este nuevo marco, llamado DiffusionBlend, fue desarrollado por investigadores de la Facultad de Ingeniería de la Universidad de Michigan (UM; Ann Arbor, MI, EUA). Emplea un modelo de difusión, una técnica de aprendizaje autosupervisado que aprende una distribución de datos previa, para permitir la reconstrucción de TC en 3D de vista dispersa a través de un muestreo posterior.

DiffusionBlend aprende correlaciones espaciales entre cortes de imágenes 2D cercanos, conocidos como difusión previa de parches 3D, y luego combina las puntuaciones de estos parches de múltiples cortes para crear el volumen completo de la imagen de TC en 3D. Cuando se probó en un conjunto de datos públicos de TC en 3D de vista dispersa, DiffusionBlend superó varios métodos de referencia, incluidas cuatro técnicas de difusión con ocho, seis y cuatro vistas, logrando una calidad de imagen computacional comparable o superior.

Para mejorar aún más su practicidad, se aplicaron métodos de aceleración, reduciendo el tiempo de reconstrucción de TC de DiffusionBlend a una hora, en comparación con las 24 horas requeridas por los métodos anteriores. Si bien los métodos de aprendizaje profundo a veces pueden introducir artefactos visuales (imágenes generadas por IA de características inexistentes), esto puede ser problemático para el diagnóstico del paciente. Para mitigar este problema, los investigadores emplearon la optimización de la consistencia de los datos, específicamente utilizando el método de gradiente conjugado, y evaluaron qué tan bien las imágenes generadas coincidían con las mediciones reales utilizando métricas como la relación señal-ruido.

"Estamos todavía en las primeras etapas de esto, pero hay mucho potencial aquí. Creo que los principios de este método pueden extenderse a cuatro dimensiones, tres dimensiones espaciales más el tiempo, para aplicaciones como la obtención de imágenes del corazón latiendo o las contracciones del estómago", dijo Jeff Fessler, profesor distinguido de Ingeniería Eléctrica y Ciencias de la Computación William L. Root en la UM y coautor correspondiente del estudio.

Enlaces relacionados:
University of Michigan Engineering

New
Mobile Cath Lab
Photon F65/F80
Portable X-ray Unit
AJEX140H
New
Ultrasound Needle Guide
Ultra-Pro 3
Multi-Use Ultrasound Table
Clinton
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Radiografía

ver canal
Imagen: Sistema de imágenes de rayos X en color y contraste de fases utilizado en la investigación (Foto cortesía de la Universidad de Houston)

Los detectores de conteo de fotones prometen imágenes rápidas de rayos X en color

Durante muchos años, los profesionales de la salud han dependido de las radiografías 2D tradicionales para diagnosticar fracturas óseas comunes, aunque a menudo pueden pasarse por... Más

Ultrasonido

ver canal
Imagen: el modelo entrenado en ecocardiografía, puede identificar enfermedades hepáticas en personas asintomáticas (foto cortesía de 123RF)

Inteligencia artificial detecta enfermedad hepática mediante ecocardiogramas

La ecocardiografía es un procedimiento de diagnóstico que utiliza ultrasonidos para visualizar el corazón y sus estructuras asociadas. Esta prueba de diagnóstico por imágenes... Más

Medicina Nuclear

ver canal
Imagen: un fármaco reutilizado para la ELA se ha convertido en una sonda de imágenes para ayudar a diagnosticar la neurodegeneración (Foto cortesía de St. Jude Children’s Research Hospital)

Técnica innovadora de imágenes PET ayuda a diagnosticar la neurodegeneración

Las enfermedades neurodegenerativas, como la esclerosis lateral amiotrófica (ELA) y la enfermedad de Alzheimer, suelen diagnosticarse solo después de que aparecen los síntomas físicos,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.