Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Inteligencia artificial para identificar melanomas

Por el equipo editorial de MedImaging en español
Actualizado el 25 Jun 2018
Print article
Imagen: Un nuevo estudio afirma que los algoritmos de aprendizaje profundo vencieron a los dermatólogos en la interpretación de las dermatoscopias (Fotografía cortesía de Dreamstime).
Imagen: Un nuevo estudio afirma que los algoritmos de aprendizaje profundo vencieron a los dermatólogos en la interpretación de las dermatoscopias (Fotografía cortesía de Dreamstime).
Las redes neuronales convolucionales (CNN, por sus siglas en inglés) entrenadas de inteligencia artificial (IA) son mejores que los dermatólogos experimentados para detectar el cáncer de piel, según un nuevo estudio.

Investigadores de la Universidad de Heidelberg (Alemania), la Universidad de Passau (Alemania) y otras instituciones, entrenaron al Inception CNN de Google para identificar el cáncer de piel mostrándole más de 100.000 imágenes almacenadas de melanomas malignos, así como lunares y nevos benignos. Luego compararon el desempeño de la CNN con el de 58 dermatólogos internacionales a través de un conjunto de pruebas de 100 imágenes, utilizando dos niveles de evidencia; el nivel I incluía imágenes de dermatoscopia por sí sola, y el nivel II incluía dermatoscopia más información clínica y fotografías.

Se les pidió a los dermatólogos que primero hicieran un diagnóstico de melanoma maligno o de lunar benigno solo a partir de las imágenes dermatoscópicas (nivel I) y tomaran una decisión sobre cómo tratarlo (es decir, cirugía, seguimiento a corto plazo o ninguna acción necesaria). Cuatro semanas después, se les proporcionó información clínica adicional sobre el paciente (incluida la edad, el sexo y la posición de la lesión) y las imágenes de primeros planos de los mismos 100 casos (nivel II), y se les solicitó una vez más su diagnóstico y diagnóstico y las decisiones de manejo.

Los resultados revelaron que en el nivel I, los dermatólogos detectaron con exactitud un promedio de 86,6% de los melanomas, e identificaron correctamente un promedio de 71,3% de las lesiones que no eran malignas. Sin embargo, cuando la CNN se reajustó al mismo nivel que los médicos para identificar correctamente los lunares benignos (71,3%), la CNN detectó con éxito el 95% de los melanomas. En el nivel II, los dermatólogos mejoraron su desempeño, diagnosticando con exactitud el 88,9% de los melanomas malignos y el 75,7% que no eran cancerosos. El estudio fue publicado el 28 de mayo de 2018 en la revista Annals of Oncology.

“La CNN pasó por alto menos melanomas, lo que significa que tenía una sensibilidad más alta que la de los dermatólogos, y diagnosticó erróneamente menos lunares benignos como melanomas malignos, lo que significa que tenía una especificidad mayor; esto daría como resultado menos cirugías innecesarias”, dijo el autor principal, el profesor Holger Haenssle, MD, de la Universidad de Heidelberg. “Cuando los dermatólogos recibieron más información clínica e imágenes en el nivel II, su desempeño diagnóstico mejoró. Sin embargo, la CNN, que todavía trabajaba únicamente a partir de imágenes dermatoscópicas sin información clínica adicional, siguió superando las capacidades de diagnóstico de los médicos”.

“Esta CNN puede servir a los médicos que participan en el cribado del cáncer de piel como una ayuda en su decisión de tomar una biopsia de una lesión o no hacerlo. La mayoría de los dermatólogos ya usan sistemas de dermatoscopia digital para obtener imágenes y almacenar lesiones para la documentación y el seguimiento “, concluyó el profesor Haenssle. “La CNN puede evaluar fácil y rápidamente la imagen almacenada para obtener una ‘opinión experta’ sobre la probabilidad de melanoma. Actualmente estamos planificando estudios prospectivos para evaluar el impacto de la CNN en la vida real para médicos y pacientes”.

El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático basados en representaciones de datos de aprendizaje, en oposición a los algoritmos específicos de tareas. Implica algoritmos de red neuronal que utilizan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción de características y la transformación, con cada capa sucesiva utilizando la salida de la capa anterior como entrada, formando así una representación jerárquica.

Enlace relacionado:
Universidad de Heidelberg
Universidad de Passau

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
40/80-Slice CT System
uCT 528
LED-Based X-Ray Viewer
Dixion X-View
New
Digital X-Ray Detector Panel
Acuity G4

Print article

Canales

Radiografía

ver canal
Imagen:Los gráficos ilustran cómo se ven las imágenes 3D con XACT con ejemplos del logotipo de la UC a la izquierda y una muestra de hueso a la derecha (foto cortesía de la Escuela de Medicina de UCI)

Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación

La tomografía computarizada (TC) ha sido durante mucho tiempo una herramienta esencial en la obtención de imágenes modernas, ya que ofrece vistas 3D detalladas del cuerpo humano y otros materiales.... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.