Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

iCAD

Offers a comprehensive range of upgradeable computer aided detection (CAD) and workflow solutions to support rapid an... más Productos destacados: More products

Deascargar La Aplicación Móvil




IA puede mejorar la eficiencia y exactitud de las imágenes del cáncer de mama

Por el equipo editorial de MedImaging en español
Actualizado el 19 Aug 2019
Print article
Imagen: Comparación de la tomosíntesis digital de mama con la mamografía (Fotografía cortesía de Carestream Health).
Imagen: Comparación de la tomosíntesis digital de mama con la mamografía (Fotografía cortesía de Carestream Health).
De acuerdo con un estudio nuevo, la inteligencia artificial (IA) puede ayudar a acortar el tiempo de lectura de la tomosíntesis digital de mama (DBT), a la vez que mantiene o mejora la exactitud.

Investigadores de la Universidad de Pensilvania (UPENN: Filadelfia, PA, EUA), iCAD (Nashua, NH, EUA) y otras instituciones, desarrollaron un sistema de IA de aprendizaje profundo que es capaz de identificar lesiones sospechosas de los tejidos blandos y calcificadas en imágenes de DBT. El sistema fue entrenado en un gran conjunto de datos DBT, y a continuación, se evaluó su desempeño haciendo que 24 radiólogos, incluidos 13 subespecialistas de mama, leyeran, cada uno, 260 exámenes DBT con y sin asistencia de la IA. Los exámenes incluyeron 65 casos de cáncer.

Los resultados revelaron que el desempeño del radiólogo para la detección de lesiones malignas aumentó de 0,795 sin IA a 0,852 con IA, mientras que el tiempo de lectura disminuyó en un 52,7%, de 64,1 segundos sin IA a 30,4 segundos con IA. La sensibilidad aumentó de 77% sin IA a 85% con IA, la especificidad aumentó de 62,7% sin a 69,6% con IA, y la tasa de rellamado, para los no cancerosos, disminuyó de 38% a 30,9% con la IA. El estudio fue publicado el 31 de julio de 2019 en la revista Radiology: Artificial Intelligence.

“En general, los lectores pudieron aumentar su sensibilidad en un ocho por ciento, reducir su tasa de rellamado en un siete por ciento y reducir su tiempo de lectura a la mitad cuando usaban la IA simultáneamente mientras leían casos de DBT”, dijo la autora principal, la profesora Emily Conant, MD, jefa de imágenes mamarias en la UPENN. “El uso simultáneo de la IA con DBT aumenta la detección de cáncer y puede hacer que los tiempos de lectura se reduzcan al tiempo que lleva leer solo la mamografía digital”.

La DBT adquiere múltiples imágenes en un rango angular limitado para producir un conjunto de imágenes reconstruidas, que luego se pueden ver individual o secuencialmente en un bucle de cine, y en una imagen 3D de la mama, que se puede ver en cortes estrechos, similar a las tomografías computarizadas . Mientras que en la mamografía 2D convencional, los tejidos superpuestos pueden enmascarar áreas sospechosas, las imágenes en 3D eliminan la superposición, haciendo que las anomalías sean más fáciles de reconocer. Se estima que la DBT en 3D reemplazará a la mamografía convencional dentro de diez años.

Enlace relacionado:
Universidad de Pensilvania
iCAD


X-ray Diagnostic System
FDX Visionary-A
Portable Color Doppler Ultrasound System
S5000
3T MRI Scanner
MAGNETOM Cima.X
X-Ray Illuminator
X-Ray Viewbox Illuminators

Print article

Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

RM

ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.