Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Módulo de IA permite la segmentación y procesamiento predictivos de imágenes

Por el equipo editorial de MedImaging en español
Actualizado el 30 Dec 2019
Print article
Imagen: Un conjunto de aplicaciones de microscopía ayuda a la imagenología predictiva, la segmentación y el procesamiento (Fotografía cortesía de Nikon Instruments)
Imagen: Un conjunto de aplicaciones de microscopía ayuda a la imagenología predictiva, la segmentación y el procesamiento (Fotografía cortesía de Nikon Instruments)
Un módulo potente de análisis y procesamiento de imágenes aprovecha el aprendizaje profundo y la inteligencia artificial (IA) para extraer con exactitud datos imparciales de grandes cantidades de conjuntos de datos de microscopía.

El módulo de análisis y procesamiento de imágenes de microscopía NIS.ai de Nikon Instruments (Melville, NY, EUA) es un conjunto de herramientas de procesamiento basadas en inteligencia artificial que utiliza redes neuronales convolucionales (CNN) para aprender a leer imágenes de pequeños conjuntos de datos de capacitación proporcionados por el usuario. Los resultados de la capacitación se pueden aplicar para procesar y analizar grandes volúmenes de datos, lo que permite a los investigadores aumentar el rendimiento y ampliar sus límites de aplicación. El NIS.ai incluye un conjunto de aplicaciones para imagenología predictiva, segmentación y procesamiento de imágenes. Éstas incluyen:

Convert.ai, que aprende patrones relacionados en dos canales de imagenología diferentes. Después del entrenamiento, Convert.ai puede predecir el patrón en el segundo canal, incluso cuando se presenta solo con el primer canal. También se puede entrenar para predecir dónde la coloración fluorescente de núcleos basada en DAPI, un método común para la segmentación y el recuento de células, se podría basar en imágenes de microscopía de contraste de interferencia diferencial (DIC) o de contraste de fase no coloreadas. Esto permite a los usuarios realizar análisis de imágenes basadas en núcleos sin tener que colorear las muestras con DAPI o adquirir un canal fluorescente.

Segment.ai, que permite identificar y segmentar fácilmente estructuras complejas. Las neuritas en las imágenes de contraste de fase son tradicionalmente difíciles de definir mediante el umbral clásico. Segment.ai se puede entrenar en un pequeño subconjunto de neuritas trazadas a mano para detectar y segmentar automáticamente neuritas de miles de conjuntos de datos no rastreados.

Enhance.ai, que permite mejorar las muestras fluorescentes tenues con una baja relación señal/ruido (SNR) al aprender cómo se ve una imagen de alta señal a ruido, a través de un proceso que compara imágenes subexpuestas y óptimamente expuestas. Enhance.ai puede restaurar detalles en imágenes fluorescentes tenues o poco expuestas, lo que permite a los investigadores obtener más información de sus aplicaciones de imágenes de baja señal.

Denoise.ai, que elimina el ruido de disparo de las imágenes confocales resonantes y se puede realizar en tiempo real. La aplicación de Denoise.ai a las imágenes confocales resonantes permite a los usuarios adquirir imágenes confocales a una velocidad ultra alta sin sacrificar la calidad de las imágenes.

“La aplicación de Aprendizaje Profundo e IA a la imagenología biomédica es extremadamente poderosa y abre posibilidades invisibles”, dijo Steve Ross, PhD, director de productos y marketing de Nikon Instruments. “Con NIS.ai, los investigadores pueden aplicar fácilmente el aprendizaje profundo para extraer datos significativos e imparciales de conjuntos de datos grandes y complejos”.

Enlace relacionado:
Nikon Instruments

Portable X-ray Unit
AJEX140H
Wall Fixtures
MRI SERIES
Ultrasound Table
Women’s Ultrasound EA Table
New
MRI Infusion Workstation
BeneFusion MRI Station

Print article

Canales

Radiografía

ver canal
Imagen: un estudio ha vinculado un mayor uso de radiografías de tórax con un diagnóstico más temprano del cáncer de pulmón y una mejor supervivencia (foto cortesía de 123RF)

Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas

El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más

RM

ver canal
Imagen: Comparación que muestra exploraciones 3T y 7T para el mismo participante (foto cortesía de P Simon Jones/University of Cambridge)

Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento

Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más

Medicina Nuclear

ver canal
Imágenes PET/TC con 68Ga-FZ-NR-1 e imágenes PET/TC y PET/RM con 18F-FDG en pacientes representativos con TNBC con nectina-4 positiva (foto cortesía del Journal of Nuclear Medicine)

Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo

El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.