Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo de IA para la TC categoriza el riesgo de cáncer de los nódulos pulmonares

Por el equipo editorial de MedImaging en español
Actualizado el 19 May 2020
Print article
Imagen: Nódulos pulmonares indeterminados en una TC de pulmón (Fotografía cortesía de Optellum)
Imagen: Nódulos pulmonares indeterminados en una TC de pulmón (Fotografía cortesía de Optellum)
Un estudio nuevo indica que una estrategia de inteligencia artificial (IA) puede evaluar y clasificar correctamente los nódulos pulmonares indeterminados sospechosos (NPI).

Desarrollada en la Universidad de Vanderbilt (Nashville, TN, EUA), Optellum (Oxford, Reino Unido) y otras instituciones, el modelo de red neuronal convolucional de predicción de cáncer de pulmón (LCP-CNN) fue entrenado inicialmente usando imágenes de tomografía computarizada (TC) de NPI del Ensayo de Cribado Nacional del Pulmón (NLST) de EUA, validadas internamente y probadas externamente en cohortes de dos instituciones académicas. Luego, los investigadores compararon el LCP-CNN con los modelos tradicionales de predicción de riesgo en un conjunto de datos muy grande de 15.693 nódulos.

Los resultados mostraron que el modelo de riesgo de IA se asoció con una mayor exactitud para el cálculo del riesgo de enfermedad previsto en cada umbral de manejo de la terapia, así como en las cohortes de validación externa. En comparación con los modelos de riesgo convencionales utilizados actualmente, el algoritmo LCP-CNN reclasificó los NPI en categorías de bajo o alto riesgo en más de un tercio de los cánceres y de los nódulos benignos. El estudio fue publicado el 24 de abril de 2020 en la revista American Journal of Respiratory and Critical Care Medicine.

“La gestión de NPI sigue siendo un desafío, y se necesitan estrategias para disminuir la tasa de procedimientos invasivos innecesarios y optimizar los regímenes de vigilancia”, concluyeron el autor principal, profesor Pierre Massion, MD, de la Universidad de Vanderbilt, y sus colegas. “Este estudio demuestra que este algoritmo de aprendizaje profundo puede reclasificar correctamente los NPI en categorías de bajo o alto riesgo, reduciendo potencialmente la cantidad de procedimientos invasivos innecesarios y demoras en el diagnóstico”.

El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático de IA que utilizan representaciones de datos, en lugar de algoritmos específicos de tareas. Involucra algoritmos CNN que ejecutan una cascada de muchas capas de unidades de procesamiento no lineales para permitir la extracción, conversión y transformación de características. Cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.

Enlace relacionado:
Universidad de Vanderbilt
Optellum

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
3T MRI Scanner
MAGNETOM Cima.X
Wall Fixtures
MRI SERIES
Radiation Therapy Treatment Software Application
Elekta ONE

Print article

Canales

Radiografía

ver canal
Imagen: La mamografía de la izquierda muestra tejido denso (blanco), pero no hay signos de cáncer. Dos años después, se desarrolló cáncer en la misma mama (derecha, tumor marcado con un círculo rojo) (Foto cortesía de Debbie Bennett/WashU Medicine)

Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías

Actualmente, no existe una manera de predecir quién está en riesgo de desarrollar cáncer de mama basándose únicamente en las imágenes de mamografías. Si bien existen algunas estrategias de reducción de... Más

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.