Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Imágenes médicas reconstruidas con IA pueden no ser confiables

Por el equipo editorial de MedImaging en español
Actualizado el 15 Jun 2020
Print article
Imagen: Imágenes con pequeñas perturbaciones estructurales (texto y símbolos) reconstruidas con IA (Fotografía cortesía de PNAS)
Imagen: Imágenes con pequeñas perturbaciones estructurales (texto y símbolos) reconstruidas con IA (Fotografía cortesía de PNAS)
Un estudio nuevo sugiere que las herramientas de aprendizaje profundo utilizadas para crear imágenes de alta calidad a partir de tiempos de escaneo cortos producen múltiples alteraciones y artefactos en los datos que podrían afectar el diagnóstico.

Investigadores de la Universidad de Oslo (Noruega), la Universidad de Cambridge (Reino Unido) y otras instituciones, realizaron un estudio para evaluar seis redes neuronales diferentes de inteligencia artificial (IA) entrenadas para crear imágenes mejoradas a partir de exámenes de resonancia magnética (RM) o de tomografía computarizada (TC). Las redes se alimentaron de datos diseñados para replicar tres posibles problemas: pequeñas perturbaciones; pequeños cambios estructurales; y cambios en la frecuencia de muestreo en comparación con los datos sobre los que se entrenó la IA. Para probar la capacidad de los sistemas de detectar pequeños cambios estructurales, el equipo agregó letras y símbolos de cartas de juego a las imágenes.

Los resultados mostraron que solo una de las redes pudo reconstruir estos detalles, pero las otras cinco presentaron problemas que iban desde la borrosidad hasta la eliminación casi completa de los cambios. Solo una de las redes neuronales produjo mejores imágenes a medida que los investigadores aumentaron la frecuencia de muestreo de los escaneos. Otra red se estancó, sin mejoras en la calidad; y en tres, las reconstrucciones disminuyeron en calidad a medida que aumentó el número de muestras. El sexto sistema de IA no permitió cambiar la frecuencia de muestreo. El estudio fue publicado el 11 de mayo de 2020, en la revista Proceedings of the National Academy of Sciences (PNAS).

“Te molestas un poco y el sistema de IA dice que la imagen del gato es de repente un camión de bomberos. Los investigadores deben comenzar a probar la estabilidad de estos sistemas. Lo que verán a gran escala es que muchos de estos sistemas de IA son inestables”, dijo el autor principal, Anders Hansen, PhD, de la Universidad de Cambridge. “El gran problema es que no existe una comprensión matemática de cómo funcionan estos sistemas de IA. Se convierten en una caja negra, y si no se prueban estas cosas correctamente, puede tener resultados completamente desastrosos”.

Las inestabilidades durante el escaneo pueden aparecer como ciertas perturbaciones pequeñas, casi indetectables (por ejemplo, debido al movimiento del paciente, que aparecen tanto en la imagen como en el dominio de muestreo, lo que resulta en artefactos en la reconstrucción; como pequeños cambios estructurales, por ejemplo, un tumor, que puede no ser capturado en la imagen reconstruida y diferentes tasas de muestreo que no coinciden con los datos con los que se entrenó el algoritmo de IA.

Enlace relacionado:
Universidad de Oslo
Universidad de Cambridge

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
Portable X-ray Unit
AJEX130HN
New
Ultrasound Scanner
TBP-5533
Fixed X-Ray System (RAD)
Allengers 325 - 525

Print article

Canales

Radiografía

ver canal
Imagen: La mamografía de la izquierda muestra tejido denso (blanco), pero no hay signos de cáncer. Dos años después, se desarrolló cáncer en la misma mama (derecha, tumor marcado con un círculo rojo) (Foto cortesía de Debbie Bennett/WashU Medicine)

Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías

Actualmente, no existe una manera de predecir quién está en riesgo de desarrollar cáncer de mama basándose únicamente en las imágenes de mamografías. Si bien existen algunas estrategias de reducción de... Más

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.