Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Inteligencia artificial predice éxito del tratamiento para pacientes con melanoma a partir de TC tempranas

Por el equipo editorial de MedImaging en español
Actualizado el 08 Mar 2022
Print article
Imagen: Los investigadores están utilizando IA para examinar TC de pacientes con melanoma (Fotografía cortesía de la Universidad de Columbia)
Imagen: Los investigadores están utilizando IA para examinar TC de pacientes con melanoma (Fotografía cortesía de la Universidad de Columbia)

La inteligencia artificial (IA) está lista para revolucionar el campo de la radiología como una herramienta para mejorar la detección, el diagnóstico y la atención clínica de enfermedades. La tecnología tiene el potencial de ayudar a los médicos al descubrir información oculta dentro de los escaneos de imágenes, invisibles incluso para el ojo bien entrenado. Ahora, los investigadores han demostrado que la aplicación de IA a las imágenes estándar de atención puede ayudar a predecir qué tan bien funcionará la inmunoterapia para los pacientes con melanoma.

Investigadores de la Universidad de Columbia (Nueva York, NY, EUA) desarrollaron un algoritmo de aprendizaje automático que analiza las tomografías computarizadas (TC) de un paciente y crea un biomarcador, conocido como firma radiómica, que se correlaciona con el resultado del paciente. La firma usó características específicas del tumor para determinar con alta precisión si la enfermedad de un individuo determinado respondería bien a la inmunoterapia, permanecería estable o continuaría progresando. El objetivo de la inmunoterapia, que se ha convertido en un tratamiento principal para el melanoma, es estimular el propio sistema inmunitario del paciente para combatir el cáncer.

Actualmente, los médicos se basan casi por completo en el tamaño del tumor para estimar el beneficio de una terapia. Los pacientes reciben una TC de referencia y luego exploraciones de seguimiento posteriores después de que ha comenzado el tratamiento. Si el tumor se reduce, el tratamiento parece estar funcionando, mientras que el crecimiento implica que la enfermedad del paciente está empeorando. Pero este no es necesariamente el caso con la inmunoterapia, y los estudios han demostrado que el tamaño y el crecimiento del tumor no siempre se correlacionan con la supervivencia general.

Biológicamente, los tumores pueden evolucionar a lo largo del curso de la enfermedad de un paciente de maneras que son más complejas de lo que puede reflejar la sola medida de tamaño. Como ejemplo de esto, los investigadores descubrieron que su algoritmo de aprendizaje automático funcionaba mejor cuando tenía en cuenta no solo el volumen y el crecimiento del tumor, sino también la heterogeneidad espacial del tumor, o la distribución no uniforme de las células cancerosas en los sitios de la enfermedad y la textura, que analiza la variación de las intensidades de los píxeles en la imagen de TC del tumor.

Los investigadores validaron el algoritmo con datos de 287 pacientes con melanoma avanzado a los que se les administró el fármaco de inmunoterapia pembrolizumab. La firma radiómica, que utilizó imágenes de TC obtenidas al inicio y en el seguimiento a los tres meses, pudo estimar la supervivencia global a los seis meses con un alto grado de precisión. De hecho, superó al método estándar basado en el diámetro del tumor, conocido como Criterios de Evaluación de Respuesta en Tumores Sólidos 1.1 (RECIST 1.1), que se usa comúnmente en ensayos clínicos para evaluar la eficacia del tratamiento.

Los investigadores ahora tienen como objetivo expandir el proyecto a una variedad de tipos de tumores diferentes, como cáncer de pulmón, cáncer de colon, cáncer renal y cáncer de próstata, así como a otros tratamientos más allá de la inmunoterapia. Los investigadores querían comenzar con una terapia novedosa y eligieron el melanoma debido a la reciente y rápida adopción de la inmunoterapia para la enfermedad.

"Esperamos tomar a un paciente desde el principio que parece que no le está yendo bien en una terapia determinada debido a su firma y mejorar, cambiar o agregar otro medicamento a la terapia", dijo Lawrence H. Schwartz, MD, Profesor James Picker y presidente del Departamento de Radiología del Colegio de Médicos y Cirujanos Vagelos de la Universidad de Columbia (VP&S).

“El campo de la radiología y la imaginología en general nunca ha sido más emocionante con esta revolución de la inteligencia artificial”, agregó el Dr. Schwartz. “Siempre hemos buscado avances en términos de nuevas máquinas, nuevos trazadores y cosas como esta. Pero esto nos brinda la oportunidad de optimizar la información que tenemos de todas nuestras modalidades de imágenes para acelerar el diagnóstico, volvernos más exactos y precisos y brindar a los pacientes tratamientos más efectivos”.


Enlaces relacionados:
Universidad de Columbia

NMUS & MSK Ultrasound
InVisus Pro
New
Ultrasound Needle Guide
Ultra-Pro 3
Ultrasound Table
Women’s Ultrasound EA Table
Radiology Software
DxWorks

Print article

Canales

Radiografía

ver canal
Imagen: un estudio ha vinculado un mayor uso de radiografías de tórax con un diagnóstico más temprano del cáncer de pulmón y una mejor supervivencia (foto cortesía de 123RF)

Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas

El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más

RM

ver canal
Imagen: Comparación que muestra exploraciones 3T y 7T para el mismo participante (foto cortesía de P Simon Jones/University of Cambridge)

Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento

Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más

Medicina Nuclear

ver canal
Imágenes PET/TC con 68Ga-FZ-NR-1 e imágenes PET/TC y PET/RM con 18F-FDG en pacientes representativos con TNBC con nectina-4 positiva (foto cortesía del Journal of Nuclear Medicine)

Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo

El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.