Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Novedoso método de obtención de imágenes por microtomografía computarizada (Micro-TC) podría reducir significativamente tiempos de exploración

Por el equipo editorial de MedImaging en español
Actualizado el 17 Mar 2022
Print article
Imagen: Investigadores de TUM trabajando juntos en el escáner de tomografía micro computarizada (Fotografía cortesía de TUM)
Imagen: Investigadores de TUM trabajando juntos en el escáner de tomografía micro computarizada (Fotografía cortesía de TUM)

La microtomografía computarizada (micro-TC) es un método de imagen basado en imágenes de rayos X que se reconstruyen para formar una imagen tridimensional de la estructura interna de muestras de pequeñas dimensiones. Los investigadores en biología y física biomédica han mejorado significativamente la micro-TC, más específicamente la obtención de imágenes con contraste de fase y radiación de rayos X de alto brillo.

Investigadores de la Universidad Técnica de Munich (TUM, Baviera, Alemania) han desarrollado una nueva rejilla óptica microestructurada y la han combinado con nuevos algoritmos analíticos. El nuevo enfoque hace posible representar y analizar las microestructuras de las muestras con mayor detalle e investigar un espectro particularmente amplio de muestras. Los investigadores en biología, medicina o ciencias de los materiales pueden utilizar este método para obtener información sobre la estructura y las características de las muestras de tejidos y materiales que son importantes en los diagnósticos y otros análisis.

Las imágenes de rayos X con contraste de fase son especialmente adecuadas para investigar tejidos blandos. El método emplea la refracción de los rayos X causados ​​por las estructuras de la muestra para obtener el contraste de estas estructuras y así representar el tejido blando con mayor detalle de lo que es posible con los métodos de rayos X convencionales. En muchos métodos de contraste de fase, los componentes ópticos modulan los rayos X en su camino hacia el detector, dando como resultado lo que se conoce como un patrón de difracción en el detector. Hasta ahora se han utilizado estructuras ineficientes como papel de lija y máscaras de absorción para este tipo de modulación, pero mientras tanto hay disponible una variedad de rejillas ópticas.

Los investigadores de TUM ahora han introducido un nuevo método para micro-TC con contraste de fase utilizando radiación de rayos X de alto brillo. La tecnología se basa en una rejilla óptica recientemente desarrollada conocida como Talbot Array Illuminator. Este nuevo elemento óptico es comparativamente fácil de producir, es resistente a la radiación de rayos X y puede usarse con diferentes energías. Esto establece los requisitos previos técnicamente necesarios para el alto contraste. El nuevo método permite un uso más eficiente de la dosis de radiación que con moduladores ordinarios como el papel de lija y reduce significativamente los tiempos de exploración.

La nueva tecnología se puede utilizar para investigar un espectro particularmente amplio de muestras. Los investigadores pueden incluso representar simultáneamente materiales de composiciones muy diferentes, por ejemplo, agua y aceite incrustados en piedra, lo que no era posible en el pasado utilizando métodos convencionales. Esto proporciona ventajas cruciales sobre los métodos convencionales no solo en medicina y biología, sino que también abre nuevas posibilidades de aplicación en ciencias de los materiales, por ejemplo, en geología.

“Al combinar nuestro Talbot Array Illuminator recientemente desarrollado con un nuevo software de análisis optimizado para ese propósito, hemos podido mejorar significativamente las imágenes y el análisis con micro-TC”, dijo Julia Herzen, profesora de Física de Imágenes Biomédicas en TUM. “La nueva tecnología es más sensible que los métodos comparables en este campo. A resoluciones muy altas, permite representar tejidos blandos con mayor contraste que antes. La alta sensibilidad es particularmente importante, por ejemplo, para detectar diferencias finas dentro del tejido blando”.

"A diferencia de los enfoques anteriores, nuestro nuevo método también hace posible el análisis cuantitativo. Podemos realizar y comparar mediciones absolutas de la densidad de electrones de las muestras, sin necesidad de hacer suposiciones sobre las muestras", agregó el profesor Herzen.

Enlaces relacionados:
Universidad Técnica de Munich

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
NMUS & MSK Ultrasound
InVisus Pro
New
Digital X-Ray Detector Panel
Acuity G4
New
Digital Radiography System
DigiEye 330

Print article

Canales

Radiografía

ver canal
Imagen: La mamografía de la izquierda muestra tejido denso (blanco), pero no hay signos de cáncer. Dos años después, se desarrolló cáncer en la misma mama (derecha, tumor marcado con un círculo rojo) (Foto cortesía de Debbie Bennett/WashU Medicine)

Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías

Actualmente, no existe una manera de predecir quién está en riesgo de desarrollar cáncer de mama basándose únicamente en las imágenes de mamografías. Si bien existen algunas estrategias de reducción de... Más

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.