Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Según un estudio, la mayoría de los radiólogos quieren adoptar herramientas de IA en la práctica clínica

Por el equipo editorial de MedImaging en español
Actualizado el 19 Aug 2022
Print article
Imagen: Los radiólogos preferirían el apoyo a la decisión basado en IA durante la interpretación de la mamografía de detección (Fotografía cortesía de Pexels)
Imagen: Los radiólogos preferirían el apoyo a la decisión basado en IA durante la interpretación de la mamografía de detección (Fotografía cortesía de Pexels)

La inteligencia artificial (IA) puede mejorar la detección del cáncer y la predicción del riesgo durante la mamografía, pero se desconocen las preferencias de los radiólogos con respecto a sus características e implementación. Ahora, un nuevo estudio sobre las preferencias de los radiólogos en relación con el uso de la IA como herramienta de apoyo para la detección del cáncer y la predicción del riesgo durante las mamografías, ha descubierto que hasta el 60 % de los radiólogos tienen la intención de adoptar herramientas de IA en la práctica clínica en un futuro próximo.

A través de entrevistas cualitativas con radiólogos, investigadores de la Universidad de Washington (Seattle, WA, EUA) y la Alianza para el Cuidado del Cáncer de Seattle (Seattle, WA, EUA), identificaron cinco atributos principales para la detección de cáncer de mama basada en IA y cuatro para la predicción del riesgo de cáncer de mama. El equipo desarrolló un experimento de elección discreta (DCE) basado en estos atributos e invitó a participar a 150 radiólogos de EUA. Cada encuestado hizo ocho elecciones para cada herramienta entre tres alternativas: dos herramientas hipotéticas basadas en IA versus detección sin IA. Los investigadores analizaron las preferencias de toda la muestra utilizando modelos logit de parámetros aleatorios e identificaron subgrupos con modelos de clases latentes. Los encuestados (N=66; tasa de respuesta del 44 %) procedían de seis entornos de práctica diversos en ocho estados.

Los investigadores encontraron que los radiólogos estaban más interesados en la IA para la detección del cáncer cuando la sensibilidad y la especificidad estaban equilibradas (94 % de sensibilidad con <25 % de los exámenes marcados) y el marcado de la IA aparecía al final del protocolo de suspensión después de que los radiólogos completaran su revisión independiente. Para la predicción del riesgo basada en la IA, los radiólogos prefirieron los modelos de IA que utilizan tanto imágenes de mamografía como datos clínicos. En general, entre el 46 y el 60 % tenía la intención de adoptar alguna de las herramientas de IA presentadas en el estudio; 26-33 % se acercaron a la IA con entusiasmo, pero se desanimaron si las características no se alineaban con sus preferencias. Con base en estos hallazgos, los investigadores concluyeron que, aunque la mayoría de los radiólogos desean utilizar el apoyo a la toma de decisiones basado en IA, la adopción a corto plazo se puede maximizar mediante la implementación de herramientas que satisfagan las preferencias de los usuarios disuadidos.

Enlaces relacionados:
Universidad de Washington  
Alianza para el Cuidado del Cáncer de Seattle

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
Portable X-ray Unit
AJEX130HN
New
Mobile Barrier
Tilted Mobile Leaded Barrier
New
MRI System
Ingenia Prodiva 1.5T CS

Print article

Canales

Radiografía

ver canal
Imagen: La mamografía de la izquierda muestra tejido denso (blanco), pero no hay signos de cáncer. Dos años después, se desarrolló cáncer en la misma mama (derecha, tumor marcado con un círculo rojo) (Foto cortesía de Debbie Bennett/WashU Medicine)

Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías

Actualmente, no existe una manera de predecir quién está en riesgo de desarrollar cáncer de mama basándose únicamente en las imágenes de mamografías. Si bien existen algunas estrategias de reducción de... Más

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.