Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo de IA identifica cáncer de pulmón en imágenes de TC en segundos

Por el equipo editorial de MedImaging en español
Actualizado el 29 Aug 2022
Print article
Imagen: Algoritmo de aprendizaje profundo puede mejorar el tratamiento de radioterapia para el cáncer de pulmón (Fotografía cortesía de Pexels)
Imagen: Algoritmo de aprendizaje profundo puede mejorar el tratamiento de radioterapia para el cáncer de pulmón (Fotografía cortesía de Pexels)

El cáncer de pulmón, el cáncer más común en todo el mundo, se trata con radioterapia (RT) en casi la mitad de los casos. La planificación de la RT es un proceso manual que requiere muchos recursos y que puede tardar días o semanas en completarse, e incluso los médicos altamente capacitados varían en sus determinaciones de cuánto tejido atacar con radiación. Además, se espera que aumente la escasez de médicos y clínicas de oncología radioterápica en todo el mundo a medida que aumenten las tasas de cáncer. Ahora, un algoritmo de aprendizaje profundo recientemente desarrollado y validado puede identificar y delinear (segmentar) un tumor de cáncer de pulmón de células no pequeñas (CPCNP) en una tomografía computarizada (TC) en segundos. Además, los oncólogos radioterápicos que usaron el algoritmo en clínicas simuladas se desempeñaron tan bien como los médicos que no usaron el algoritmo, mientras trabajaron un 65 % más rápido.

Investigadores del Hospital Brigham and Women's (Boston, MA, EUA) desarrollaron el algoritmo de aprendizaje profundo usando imágenes de TC de 787 pacientes para entrenar su modelo para distinguir tumores de otros tejidos. Probaron el rendimiento del algoritmo utilizando escaneos de más de 1.300 pacientes de conjuntos de datos cada vez más externos. El desarrollo y la validación del algoritmo implicó una estrecha colaboración entre los científicos de datos y los oncólogos radioterápicos. Por ejemplo, cuando los investigadores observaron que el algoritmo estaba segmentando incorrectamente las tomografías computarizadas que involucraban los ganglios linfáticos, volvieron a entrenar el modelo con más de estas exploraciones para mejorar su rendimiento.

Finalmente, los investigadores pidieron a ocho oncólogos de radiación que realizaran tareas de segmentación, así como que calificaran y editaran las segmentaciones producidas por otro médico experto o por el algoritmo (no se les dijo cuál). No hubo una diferencia significativa en el rendimiento entre las colaboraciones humano-IA y las segmentaciones producidas por humanos (de novo). Curiosamente, los médicos trabajaron un 65 % más rápido y con un 32 % menos de variación al editar una segmentación producida por IA en comparación con una producida manualmente, aunque no sabían cuál estaban editando. También calificaron la calidad de las segmentaciones dibujadas por IA más alto que las segmentaciones dibujadas por expertos humanos en este estudio ciego.

En el futuro, los investigadores planean combinar este trabajo con modelos de IA que diseñaron previamente que pueden identificar "órganos en riesgo" de recibir radiación no deseada durante el tratamiento del cáncer (como el corazón) y, por lo tanto, excluirlos de la radioterapia. Continúan estudiando cómo los médicos interactúan con la IA para garantizar que las asociaciones con IA ayuden, en lugar de dañar, la práctica clínica, y están desarrollando un segundo algoritmo de segmentación independiente que puede verificar tanto las segmentaciones humanas como las dibujadas por IA.

"La mayor brecha de traducción en las aplicaciones de IA a la medicina es la falta de estudio sobre cómo usar la IA para mejorar a los médicos humanos, y viceversa", dijo el autor correspondiente Raymond Mak, MD, del Departamento de Oncología Radioterápica de Brigham. “Estamos estudiando cómo hacer asociaciones y colaboraciones entre humanos e IA que tengan como efecto mejores resultados para los pacientes. Los beneficios de este enfoque para los pacientes incluyen una mayor consistencia en la segmentación de los tumores y tiempos acelerados de tratamiento. Los beneficios para los médicos incluyen una reducción del trabajo informático mundano pero difícil, lo que puede reducir el agotamiento y aumentar el tiempo que pueden pasar con los pacientes”.

“Este estudio presenta una estrategia de evaluación novedosa para modelos de IA que enfatiza la importancia de la colaboración humano-IA”, agregó el coautor Hugo Aerts, PhD, del Departamento de Oncología Radioterápica. “Esto es especialmente necesario porque las evaluaciones in silico (modeladas por computadora) pueden dar resultados diferentes a las evaluaciones clínicas. Nuestro enfoque puede ayudar a allanar el camino hacia el despliegue clínico".

 

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Multi-Use Ultrasound Table
Clinton
Radiology Software
DxWorks
New
Ultrasound Table
General 3-Section Top EA Ultrasound Table

Print article

Canales

Radiografía

ver canal
Imagen: La mamografía de la izquierda muestra tejido denso (blanco), pero no hay signos de cáncer. Dos años después, se desarrolló cáncer en la misma mama (derecha, tumor marcado con un círculo rojo) (Foto cortesía de Debbie Bennett/WashU Medicine)

Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías

Actualmente, no existe una manera de predecir quién está en riesgo de desarrollar cáncer de mama basándose únicamente en las imágenes de mamografías. Si bien existen algunas estrategias de reducción de... Más

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.