Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA mejora la detección de fracturas en TC de trauma de cuerpo entero

Por el equipo editorial de MedImaging en español
Actualizado el 12 Oct 2022
Print article
Imagen: El algoritmo de IA puede ayudar a evitar fracturas pasadas por alto en los exámenes de TC de cuerpo completo (Fotografía cortesía de Pexels)
Imagen: El algoritmo de IA puede ayudar a evitar fracturas pasadas por alto en los exámenes de TC de cuerpo completo (Fotografía cortesía de Pexels)

El servicio de emergencia es un entorno con un riesgo potencial de errores de diagnóstico durante la atención traumatológica, en particular de fracturas. En la atención primaria de pacientes con múltiples traumatismos, se recomienda la tomografía computarizada de cuerpo completo como estándar de atención. Está bien establecido que la tomografía computarizada es superior a las radiografías simples en la evaluación de fracturas. No obstante, los diagnósticos pasados por alto son comunes. Los métodos de aprendizaje profundo de la red neuronal convolucional (CNN) ahora se usan ampliamente en medicina porque mejoran la precisión del diagnóstico, disminuyen las interpretaciones erróneas y mejoran la eficiencia. Ahora, un nuevo estudio descubrió que con la asistencia del modelo CNN, los cirujanos mostraron una sensibilidad mejorada para detectar fracturas y se redujo el tiempo de lectura e interpretación de las TC, especialmente para los cirujanos ortopédicos con menos experiencia. Los hallazgos sugieren que la aplicación del modelo CNN puede conducir a reducciones en las fracturas pasadas por alto de las imágenes de TC de cuerpo completo y a flujos de trabajo más rápidos y una mejor atención al paciente a través de un diagnóstico eficiente en pacientes con politraumatismos.

En el estudio, los investigadores de la Universidad de Chiba (Chiba, Japón) investigaron si la localización y clasificación automáticas mediante CNN podrían aplicarse a las fracturas de pelvis, costillas y columna vertebral. También examinaron si este algoritmo de detección de fracturas podría ayudar a los médicos en el diagnóstico de fracturas. Se utilizaron un total de 7.664 cortes axiales de TC de cuerpo entero (tórax, abdomen, pelvis) de 200 pacientes. De esto, 5.217 imágenes de 181 pacientes se usaron para entrenamiento y validación, mientras que 2.447 imágenes de 19 pacientes se reservaron para un conjunto de datos de prueba. El conjunto de datos de prueba incluyó un 5,8 % con fracturas de pelvis, un 5,5 % con fracturas de columna y un 3,6 % con fracturas de costillas.

Los investigadores descubrieron que, por sí solo, el algoritmo producía una sensibilidad del 78,6 %, una precisión del 64,8 % y una puntuación F1 de 0,711. Luego, los investigadores evaluaron el desempeño de tres cirujanos ortopédicos en el conjunto de prueba con y sin la ayuda de la IA. Dos cirujanos ortopédicos tenían tres años de experiencia, mientras que el tercer cirujano ortopédico tenía ocho años de experiencia. Los investigadores encontraron que la IA redujo drásticamente el tiempo de diagnóstico de 278,4 segundos a 162,3 segundos para un cirujano, de 205,2 segundos a 144,5 segundos para el segundo cirujano y de 233,7 segundos a 155,5 segundos para el tercer cirujano. Todas las diferencias fueron estadísticamente significativas (p < 0,0001). Con base en los hallazgos, los investigadores concluyeron que la CNN podría servir como un sistema de clasificación en un departamento de emergencias ocupado y que el uso de IA también puede conducir a tiempos de lectura más cortos.

"Aunque cada examen toma solo unos minutos, una reducción en el tiempo de lectura tiene un impacto significativo para el personal de emergencia que toma múltiples decisiones clínicas cada día", escribieron los autores. "Los médicos de urgencias y los radiólogos en turnos largos pueden experimentar fatiga y tensión oculomotora, lo que reduce la capacidad de enfocar y detectar fracturas. El reconocimiento de fracturas mediante CNN no solo es capaz de detectar hallazgos sutiles que son difíciles de diagnosticar para los médicos sin experiencia, sino que también previene errores cognitivos debido a la fatiga humana y la interpretación sesgada de la imagen".

Enlaces relacionados:
Universidad de Chiba  

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Multi-Use Ultrasound Table
Clinton
LED-Based X-Ray Viewer
Dixion X-View
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Print article

Canales

Radiografía

ver canal
Imagen: La mamografía de la izquierda muestra tejido denso (blanco), pero no hay signos de cáncer. Dos años después, se desarrolló cáncer en la misma mama (derecha, tumor marcado con un círculo rojo) (Foto cortesía de Debbie Bennett/WashU Medicine)

Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías

Actualmente, no existe una manera de predecir quién está en riesgo de desarrollar cáncer de mama basándose únicamente en las imágenes de mamografías. Si bien existen algunas estrategias de reducción de... Más

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.