Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Herramienta de IA predice riesgo de cáncer de pulmón a partir de TC de tórax de dosis baja

Por el equipo editorial de MedImaging en español
Actualizado el 17 Jan 2023
Print article
La herramienta de IA predice con precisión el riesgo de cáncer de pulmón para las personas (Fotografía cortesía del Mass General Cancer Center)
La herramienta de IA predice con precisión el riesgo de cáncer de pulmón para las personas (Fotografía cortesía del Mass General Cancer Center)

El cáncer de pulmón es la principal causa de muerte por cáncer en el mundo. Se recomienda la tomografía computarizada de dosis baja (TCBD) de tórax para evaluar a las personas en el grupo etario de 50 a 80 años que tienen un historial significativo de tabaquismo o que actualmente fuman. Los estudios han demostrado que la detección con TCBD puede reducir el riesgo de muerte por cáncer de pulmón hasta en un 24 %. Sin embargo, con el aumento de las tasas de cáncer de pulmón entre los no fumadores, existe la necesidad de nuevas estrategias para detectar y predecir con precisión el riesgo de cáncer de pulmón entre una población más amplia. Ahora, los investigadores han desarrollado y probado una herramienta de inteligencia artificial (IA) que predice con precisión el riesgo de cáncer de pulmón para las personas con o sin un historial significativo de tabaquismo en función del análisis de las exploraciones TCBD de los pacientes.

Con el fin de ayudar a mejorar la eficiencia de la detección del cáncer de pulmón y proporcionar evaluaciones individualizadas, investigadores del Mass General Cancer Center (Boston, MA, EUA), en colaboración con investigadores del Instituto Tecnológico de Massachusetts (MIT, Cambridge, MA, EUA) , han desarrollado Sybil, un modelo de aprendizaje profundo que analiza los escaneos y predice el riesgo de cáncer de pulmón para los próximos uno a seis años. En su estudio, el equipo validó Sybil utilizando tres conjuntos de datos independientes: un conjunto de escaneos de más de 6.000 participantes de NLST (estudio nacional de detección pulmonar de EUA) que Sybil no había visto antes; 8.821 TCBD de EUA; y 12.280 TCBD de Taiwán. El último conjunto de escaneos incluyó a personas con una variedad de antecedentes de tabaquismo, incluidos aquellos que nunca fumaron.

Los investigadores encontraron que Sybil podía predecir con precisión el riesgo de cáncer de pulmón en estos conjuntos. El equipo determinó la precisión de Sybil utilizando el área bajo la curva (AUC), que mide qué tan bien una prueba distingue entre muestras enfermas y normales y en la que 1.0 se considera una puntuación perfecta. Sybil pudo predecir el cáncer en un rango de un año con AUC de 0,92 para los participantes adicionales del NLST, 0,86 para el conjunto de datos del MGH y 0,94 para el conjunto de datos de Taiwán. Sybil predijo el cáncer de pulmón dentro de los seis años con AUC de 0,75, 0,81 y 0,80, respectivamente, para los tres conjuntos de datos. Los investigadores ahora comenzarán un ensayo clínico prospectivo para probar Sybil en el mundo real y ver cómo puede ayudar a los radiólogos.

"Sybil requiere solo una TCBD y no depende de los datos clínicos ni de las anotaciones del radiólogo", dijo el coautor Florian Fintelmann, MD, del Departamento de Radiología, División de Imagen e Intervención Torácica del Hospital General de Massachusetts. "Fue diseñado para ejecutarse en tiempo real en el fondo de una estación de lectura de radiología estándar que permite el soporte de decisiones clínicas en el punto de atención".

 

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
Portable Color Doppler Ultrasound Scanner
DCU10
Ultra-Flat DR Detector
meX+1717SCC
New
Multi-Use Ultrasound Table
Clinton

Print article

Canales

Radiografía

ver canal
Imagen: La mamografía de la izquierda muestra tejido denso (blanco), pero no hay signos de cáncer. Dos años después, se desarrolló cáncer en la misma mama (derecha, tumor marcado con un círculo rojo) (Foto cortesía de Debbie Bennett/WashU Medicine)

Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías

Actualmente, no existe una manera de predecir quién está en riesgo de desarrollar cáncer de mama basándose únicamente en las imágenes de mamografías. Si bien existen algunas estrategias de reducción de... Más

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.