Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA supera al modelo de riesgo estándar para predecir cáncer de mama

Por el equipo editorial de MedImaging en español
Actualizado el 15 Jun 2023
Print article
Imagen: Los algoritmos de IA superaron al modelo de riesgo clínico estándar para predecir el riesgo de cáncer de mama a cinco años (Fotografía cortesía de Freepik)
Imagen: Los algoritmos de IA superaron al modelo de riesgo clínico estándar para predecir el riesgo de cáncer de mama a cinco años (Fotografía cortesía de Freepik)

El riesgo de cáncer de mama en las mujeres generalmente se evalúa utilizando modelos clínicos como el modelo de riesgo del Consorcio de Vigilancia del Cáncer de Mama (BCSC). Este modelo utiliza varios datos de pacientes, incluida la edad, antecedentes familiares de cáncer de mama, antecedentes de parto y densidad mamaria, para producir una puntuación de riesgo. Ahora, un gran estudio de miles de mamografías ha demostrado que los algoritmos de inteligencia artificial (IA) pueden superar este modelo de riesgo clínico estándar para predecir el riesgo de cáncer de mama a cinco años.

En el estudio retrospectivo, los investigadores de Kaiser Permanente Northern California (Oakland, CA, EUA) usaron datos de mamografías 2D de detección negativas (que no indicaban signos visibles de cáncer) realizadas en 2016. De las 324.009 mujeres elegibles examinadas ese año, se seleccionó aleatoriamente un subgrupo de 13.628 mujeres para examinarlas. Además, las 4.584 pacientes a las que se les diagnosticó cáncer dentro de los cinco años posteriores a su mamografía de 2016 también se incluyeron en el estudio. Todas las mujeres fueron monitoreadas hasta 2021. Los investigadores dividieron la duración del estudio de cinco años en tres marcos de tiempo separados: riesgo de cáncer de intervalo (diagnósticos entre 0 y 1 año), riesgo de cáncer futuro (diagnósticos entre 1 y 5 años) y todo riesgo de cáncer (diagnósticos entre 0 y 5 años).

Se emplearon cinco algoritmos de IA, incluidos dos utilizados por investigadores y tres disponibles comercialmente, para generar puntajes de riesgo de cáncer de mama durante el período de cinco años utilizando las mamografías de detección de 2016. Estos puntajes de riesgo luego se compararon entre sí y con el puntaje de riesgo clínico BCSC. El estudio reveló que los cinco algoritmos de IA superaron al modelo de riesgo BCSC en la predicción del riesgo de cáncer de mama de 0 a 5 años. Algunos algoritmos de IA se destacaron en la identificación de pacientes de alto riesgo de cáncer de intervalo, que a menudo puede ser agresivo y puede requerir una segunda lectura de mamografía, exámenes de detección adicionales o imágenes de seguimiento a intervalos cortos. Por ejemplo, al evaluar a las mujeres con el 10 % más alto de riesgo, la IA predijo hasta el 28 % de los cánceres en comparación con el 21 % que predijo el BCSC. Curiosamente, incluso los algoritmos de IA diseñados para horizontes de tiempo más cortos (tan bajos como 3 meses) podrían predecir hasta cinco años de riesgo futuro de cáncer cuando la mamografía no detectó clínicamente cáncer. Cuando se combinaron los modelos de riesgo de IA y BCSC mejoró aún más la predicción del cáncer.

"Los modelos de riesgo clínico dependen de la recopilación de información de diferentes fuentes, que no siempre está disponible o recopilada", dijo el investigador principal Vignesh A. Arasu, MD, Ph.D., científico investigador y radiólogo en ejercicio en Kaiser Permanente Northern California. "Los avances recientes en el aprendizaje profundo de la IA nos brindan la capacidad de extraer cientos a miles de características mamográficas adicionales".

"Este fuerte desempeño predictivo durante el período de cinco años sugiere que la IA está identificando tanto los cánceres pasados por alto como las características del tejido mamario que ayudan a predecir el desarrollo futuro del cáncer. Algo en las mamografías nos permite rastrear el riesgo de cáncer de mama. Esta es la 'caja negra' de la IA, añadió Arasu.

Enlaces relacionados:
Kaiser Permanente  

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Ultrasound Table
General 3-Section Top EA Ultrasound Table
New
Digital Radiography System
DigiEye 330
New
Mammo 3D Performance Kits
Mammo 3D Performance Kits

Print article

Canales

Radiografía

ver canal
Imagen: La mamografía de la izquierda muestra tejido denso (blanco), pero no hay signos de cáncer. Dos años después, se desarrolló cáncer en la misma mama (derecha, tumor marcado con un círculo rojo) (Foto cortesía de Debbie Bennett/WashU Medicine)

Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías

Actualmente, no existe una manera de predecir quién está en riesgo de desarrollar cáncer de mama basándose únicamente en las imágenes de mamografías. Si bien existen algunas estrategias de reducción de... Más

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.