Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA fusiona TC y RM para mejorar diagnóstico clínico

Por el equipo editorial de MedImaging en español
Actualizado el 06 Jul 2023
Print article
Imagen: Una técnica combina imágenes de estructuras óseas duras de tomografía computarizada con detalles de tejido suave de la imagen de resonancia magnética (Fotografía cortesía de Freepik)
Imagen: Una técnica combina imágenes de estructuras óseas duras de tomografía computarizada con detalles de tejido suave de la imagen de resonancia magnética (Fotografía cortesía de Freepik)

La tomografía computarizada (TC) utiliza tecnología de rayos X para tomar imágenes transversales detalladas del cuerpo, que luego se convierten en una visualización 3D de las estructuras óseas que son opacas a los rayos X. Por otro lado, la resonancia magnética nuclear (RMN) utiliza potentes campos magnéticos y ondas de radio para generar imágenes precisas de tejidos blandos como órganos o tejidos dañados. La combinación de estas dos técnicas podría ofrecer a los profesionales de la salud una visión más holística de la anatomía de un paciente, descubriendo aspectos ocultos de sus problemas de salud. Ahora, una nueva investigación ha demostrado cómo se puede utilizar la inteligencia artificial (IA) para combinar imágenes de tomografías computarizadas y resonancias magnéticas clínicas.

El nuevo método, conocido como Dual-Branch Generative Adversarial Network (Red adversaria generativa de doble rama, DBGAN), ha sido desarrollado por investigadores de la Universidad Queen Mary de Londres (Londres, Reino Unido) y la Universidad Tecnológica Shandong (Zibo, China) y tiene el potencial de permitir una interpretación más clara clínicamente más valiosa de las tomografías computarizadas y las resonancias magnéticas. Esta técnica fusiona de manera efectiva las estructuras óseas rígidas de la tomografía computarizada con las imágenes detalladas de los tejidos blandos de la resonancia magnética. Este desarrollo podría mejorar el diagnóstico clínico y la atención del paciente para una cantidad de condiciones en las que dichas imágenes se usan comúnmente pero presentan limitaciones cuando se usan por separado.

DBGAN es un enfoque avanzado de IA basado en algoritmos de aprendizaje profundo, que presenta una estructura de doble rama con múltiples generadores y discriminadores. Los generadores producen imágenes fusionadas que combinan las características clave e información adicional de las tomografías computarizadas y las resonancias magnéticas. Los discriminadores evalúan la calidad de las imágenes generadas comparándolas con imágenes reales y filtrando las de menor calidad hasta lograr una fusión de alta calidad. Esta interacción adversa generativa entre generadores y discriminadores permite la fusión eficiente y realista de imágenes de TC y RM, minimizando los artefactos y maximizando la información visual.

La naturaleza dual de DBGAN incluye un módulo de extracción multiescala (MEM) que se enfoca en extraer características clave e información detallada de las tomografías computarizadas y resonancias magnéticas y un módulo de autoatención (SAM) que destaca las características más relevantes y únicas en las imágenes fusionadas. Las pruebas exhaustivas del método DBGAN han demostrado que su rendimiento es superior en comparación con las técnicas existentes en términos de calidad de imagen y precisión diagnóstica. Dado que las tomografías computarizadas y las resonancias magnéticas tienen sus propias fortalezas y debilidades, la aplicación de la IA puede ayudar a los radiógrafos a combinar sinérgicamente ambos tipos de imágenes, maximizando sus fortalezas y eliminando sus debilidades.

Enlaces relacionados:
Universidad Queen Mary de Londres  
Universidad de Tecnología de Shandong

Digital X-Ray Detector Panel
Acuity G4
3T MRI Scanner
MAGNETOM Cima.X
Ultrasound Table
Women’s Ultrasound EA Table
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Print article

Canales

Radiografía

ver canal
Imagen: un estudio ha vinculado un mayor uso de radiografías de tórax con un diagnóstico más temprano del cáncer de pulmón y una mejor supervivencia (foto cortesía de 123RF)

Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas

El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más

RM

ver canal
Imagen: Comparación que muestra exploraciones 3T y 7T para el mismo participante (foto cortesía de P Simon Jones/University of Cambridge)

Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento

Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más

Medicina Nuclear

ver canal
Imágenes PET/TC con 68Ga-FZ-NR-1 e imágenes PET/TC y PET/RM con 18F-FDG en pacientes representativos con TNBC con nectina-4 positiva (foto cortesía del Journal of Nuclear Medicine)

Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo

El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.