Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Nueva investigación muestra que la IA puede pedir a otra IA una segunda opinión sobre exploraciones médicas

Por el equipo editorial de MedImaging en español
Actualizado el 01 Aug 2023
Print article
Imagen: Imagen médica anotada por IA que muestra regiones mejoradas de tumor, núcleo tumoral y edema (Fotografía cortesía de la Universidad de Monash)
Imagen: Imagen médica anotada por IA que muestra regiones mejoradas de tumor, núcleo tumoral y edema (Fotografía cortesía de la Universidad de Monash)

El campo de la inteligencia artificial médica ha logrado avances notables gracias al aprendizaje profundo. Sin embargo, entrenar estos modelos de aprendizaje profundo generalmente requiere una gran cantidad de datos anotados. Este proceso de anotar grandes conjuntos de datos no solo requiere mucha mano de obra, sino que también es susceptible a los sesgos humanos, especialmente para tareas de predicción densas como la segmentación de imágenes. Inspirándose en algoritmos semisupervisados, que utilizan tanto datos etiquetados como no etiquetados para el entrenamiento, los investigadores han creado un nuevo algoritmo de IA de entrenamiento conjunto para imágenes médicas que imita el proceso de buscar una segunda opinión.

La investigación realizada por científicos de la Universidad de Monash (Melbourne, VIC, Australia) aborda el desafío de la disponibilidad limitada de imágenes médicas etiquetadas o anotadas por humanos mediante la adopción de un enfoque de aprendizaje contradictorio o competitivo hacia los datos no etiquetados. Se espera que esta investigación innovadora abra los horizontes del análisis de imágenes médicas para radiólogos y otros expertos en atención médica. La anotación manual de una gran cantidad de imágenes médicas exige mucho tiempo, esfuerzo y experiencia, lo que a menudo limita la disponibilidad de conjuntos de datos de imágenes médicas anotadas a gran escala. El algoritmo diseñado por estos investigadores permite que múltiples modelos de IA aprovechen las fortalezas únicas de los datos etiquetados y no etiquetados, aprendiendo unos de las predicciones de los otros para mejorar la precisión general. La próxima etapa de la investigación se centrará en ampliar la aplicación para acomodar varios tipos de imágenes médicas y desarrollar un producto de extremo a extremo dedicado para su uso en prácticas de radiología.

“Nuestro algoritmo ha producido resultados innovadores en el aprendizaje semisupervisado, superando los métodos de vanguardia anteriores. Demuestra un desempeño notable incluso con anotaciones limitadas, a diferencia de los algoritmos que se basan en grandes volúmenes de datos anotados”, dijo Himashi Peiris candidato a Ph.D. en la Facultad de Ingeniería de la Universidad de Monash. “Esto permite que los modelos de IA tomen decisiones más informadas, validen sus evaluaciones iniciales y descubran diagnósticos y decisiones de tratamiento más precisos”.

Enlaces relacionados:
Universidad Monash

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Diagnostic Ultrasound System
MS1700C
New
3T MRI Scanner
MAGNETOM Cima.X
New
Digital X-Ray Detector Panel
Acuity G4

Print article

Canales

Radiografía

ver canal
Imagen: La mamografía de la izquierda muestra tejido denso (blanco), pero no hay signos de cáncer. Dos años después, se desarrolló cáncer en la misma mama (derecha, tumor marcado con un círculo rojo) (Foto cortesía de Debbie Bennett/WashU Medicine)

Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías

Actualmente, no existe una manera de predecir quién está en riesgo de desarrollar cáncer de mama basándose únicamente en las imágenes de mamografías. Si bien existen algunas estrategias de reducción de... Más

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.