Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de aprendizaje automático combina biomarcadores de metilación del ADN, clínicos y de imágenes para detección temprana del cáncer de pulmón

Por el equipo editorial de MedImaging en español
Actualizado el 22 Aug 2023
Print article
Imagen: Un modelo combinado de aprendizaje automático permite una clasificación precisa de nódulos pulmonares (Fotografía cortesía de Freepik)
Imagen: Un modelo combinado de aprendizaje automático permite una clasificación precisa de nódulos pulmonares (Fotografía cortesía de Freepik)

El cáncer de pulmón es responsable de un número significativo de muertes relacionadas con el cáncer en todo el mundo. Aunque varios tratamientos, entre ellos la quimioterapia, la inmunoterapia y la cirugía, han progresado, el panorama general para los pacientes con cáncer de pulmón sigue siendo sombrío. Esto se debe principalmente a un diagnóstico tardío, a menudo en las etapas III o IV, cuando la tasa de supervivencia a cinco años cae por debajo del 10 %. La detección temprana en las etapas 0 a II podría reducir significativamente la mortalidad, pero la falta de tecnologías sensibles y síntomas perceptibles en las primeras etapas presenta desafíos sustanciales.

Los biomarcadores de metilación del ácido desoxirribonucleico (ADN) han demostrado potencial para la detección temprana del cáncer de pulmón, ya que indican eventos relacionados con el inicio del tumor. El uso de métodos de secuenciación de próxima generación para identificar patrones de metilación en el ADN tumoral circulante podría permitir la detección no invasiva del cáncer de pulmón. Si bien la tomografía computarizada de baja dosis (TCBD) ha sido eficaz en la detección temprana entre los grupos de alto riesgo, determinar el riesgo de malignidad de los nódulos pulmonares mediante TCBD sigue siendo un desafío. Ahora, los investigadores han desarrollado y validado un modelo combinado de aprendizaje automático que comprende biomarcadores de metilación del ADN extracelular, clínicos y de imágenes que mejora la clasificación de los nódulos pulmonares y permite un diagnóstico más temprano del cáncer de pulmón.

En el nuevo estudio, investigadores de la Universidad Médica de Guangzhou (Guangzhou, China) desarrollaron un modelo combinado de biomarcadores clínicos y de imagen (CIBM) que utiliza algoritmos de aprendizaje automático para diferenciar nódulos pulmonares malignos y benignos. Cuando se integra con PulmoSeek, un modelo de metilación del ADN extracelular preexistente, el modelo CIBM puede identificar nódulos de pequeño tamaño para diagnosticar el cáncer de pulmón en sus etapas iniciales. Para su estudio, los investigadores inscribieron participantes de 18 años o más, con tipos específicos de nódulos pulmonares, en 20 ciudades chinas. Utilizando más de 800 muestras, los investigadores entrenaron el algoritmo de aprendizaje automático del modelo CIBM para distinguir entre tumores benignos y malignos. Luego, este modelo CIBM se integró con PulmoSeek para crear PulmoSeek Plus, un modelo de diagnóstico combinado. Utilizando el análisis de la curva de decisión, el equipo evaluó su aplicación clínica y clasificó los nódulos en grupos de riesgo. El objetivo era evaluar el desempeño y la capacidad de diagnóstico de tres modelos: PulmoSeek, CIBM y PulmoSeek Plus.

Los resultados mostraron que PulmoSeek Plus tiene potencial para  diagnosticar exitosamente la etapa temprana de nódulos pulmonares benignos o malignos. Utilizado junto con TCBD, este modelo podría ser una herramienta poderosa en la evaluación clínica temprana del cáncer de pulmón. La combinación de CIBM con el modelo PulmoSeek aumentó la sensibilidad de la clasificación de nódulos en un 6 % y el valor predictivo negativo en un 24 %. Además, el desempeño del modelo se mantuvo sólido en los diferentes tipos, tamaños y etapas de nódulos pulmonares, con sensibilidades de caracterización para nódulos en etapa temprana y pequeños de 0,98 y 0,99, respectivamente. Particularmente notable fue su sensibilidad de caracterización del 100 % para nódulos subsólidos, que normalmente son difíciles de categorizar utilizando solo TCBD. La creación del modelo PulmoSeek Plus marca un avance significativo en la detección temprana del cáncer de pulmón. Dado que únicamente requiere muestras de sangre e imágenes de tomografía computarizada no invasivas, el modelo ofrece un enfoque eficiente y prometedor que podría cambiar fundamentalmente la forma en que se diagnostica y trata el cáncer de pulmón.

Enlaces relacionados:
Universidad Médica de Guangzhou  

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Ultrasound Imaging System
P12 Elite
Portable Color Doppler Ultrasound Scanner
DCU10
New
Miembro Oro
X-Ray QA Meter
T3 RG Pro

Print article

Canales

Radiografía

ver canal
Imagen: La mamografía de la izquierda muestra tejido denso (blanco), pero no hay signos de cáncer. Dos años después, se desarrolló cáncer en la misma mama (derecha, tumor marcado con un círculo rojo) (Foto cortesía de Debbie Bennett/WashU Medicine)

Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías

Actualmente, no existe una manera de predecir quién está en riesgo de desarrollar cáncer de mama basándose únicamente en las imágenes de mamografías. Si bien existen algunas estrategias de reducción de... Más

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.