Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Biopsia virtual impulsada por IA ayuda a evaluar cáncer de pulmón a partir de exploraciones médicas

Por el equipo editorial de MedImaging en español
Actualizado el 27 Mar 2024
Print article
Imagen: La IA extrae información sobre la composición química de los tumores pulmonares a partir de escaneos médicos (Fotografía cortesía del Colegio Imperial de Londres)
Imagen: La IA extrae información sobre la composición química de los tumores pulmonares a partir de escaneos médicos (Fotografía cortesía del Colegio Imperial de Londres)

El cáncer de pulmón, la principal causa de muertes relacionadas con el cáncer, presenta un desafío en gran medida debido a la ausencia de síntomas en sus primeras etapas. Esto subraya la necesidad urgente de nuevos métodos para detectar y tratar la enfermedad antes de que haga metástasis. Por lo general, los pacientes que presentan síntomas de cáncer de pulmón se someten a procedimientos de diagnóstico como radiografías de tórax y tomografías computarizadas (TC), que también pueden revelar si el cáncer se ha extendido. Cuando es posible, se toma una biopsia para que los científicos clínicos la examinen bajo un microscopio, identificando el tipo de cáncer de pulmón, lo cual es crucial para determinar el plan de tratamiento más eficaz. Además, una prueba más reciente, conocida como perfil metabolómico, requiere una biopsia de tejido y ofrece información más profunda de la composición química y metabólica de las células tumorales, proporcionando información vital sobre cómo puede progresar el cáncer. Sin embargo, esta prueba no se utiliza comúnmente en los hospitales debido a su naturaleza laboriosa y que requiere mucho tiempo.

Últimamente, la inteligencia artificial (IA), en particular la IA generativa que puede crear nuevo contenido a partir de datos aprendidos, se utiliza cada vez más en el campo de las imágenes médicas para detectar enfermedades que los médicos humanos podrían pasar por alto o que son imperceptibles a simple vista. Ahora, investigadores del Colegio Imperial de Londres (Londres, Reino Unido) han desarrollado un sistema que integra las TC con el perfil químico tanto de los tumores como del tejido pulmonar normal. Esta innovación no sólo clasifica el tipo de cáncer de pulmón sino que también proporciona predicciones precisas sobre los resultados de los pacientes. Por primera vez, el uso de imágenes médicas combinadas con IA ofrece lo que podría considerarse una "biopsia virtual" para pacientes con cáncer. Esta técnica no invasiva es clave para identificar los tipos de cáncer de pulmón y predecir la progresión del cáncer, especialmente cuando una biopsia física de tejido es inviable o inapropiada.

Para la investigación, el equipo se propuso determinar si la información química de los tumores de pulmón, tal como se indica en su perfil metabolómico podría detectarse en las TC. La construcción de un modelo de IA requirió entrenamiento con datos de pacientes que se sometieron a exploraciones médicas, recibieron diagnósticos definitivos y para quienes hay información clínica adicional disponible. Utilizando datos de 48 pacientes tratados por cáncer de pulmón, cada uno de los cuales se sometió a una TC y a un perfil metabolómico detallado de su tumor y el tejido sano adyacente, el equipo creó una herramienta de aprendizaje profundo impulsada por IA llamada TC-radiómica-metabolómica de tejido (TMR-CT). Descubrieron un vínculo fuerte y significativo entre los perfiles metabolómicos de los pacientes y las "características profundas" en sus tomografías computarizadas, que se manifiestan como variaciones en el brillo u oscuridad de las imágenes.

Los investigadores plantearon la hipótesis de que este método podría eliminar la necesidad de muestras físicas de tejido, permitiendo inferir las características metabólicas del tumor directamente a partir de TC. Para validar esto, aplicaron el modelo TMR-CT a un grupo separado de 723 pacientes con cáncer de pulmón que se habían sometido a TC pero carecían de datos metabolómicos. Los hallazgos fueron notables: TMR-CT categorizó de manera competente los tipos de cáncer de pulmón y proporcionó predicciones confiables sobre los resultados de los pacientes, superando las metodologías y evaluaciones clínicas tradicionales basadas en TC. El equipo tiene la esperanza de confirmar la eficacia de TMR-CT en otros grupos de pacientes, incluidos aquellos con cánceres de cerebro, ovario y endometrio, donde la obtención de biopsias suele ser un desafío. En el futuro, esta técnica podría integrarse en escáneres de imágenes médicas comerciales como un algoritmo, revolucionando así el diagnóstico del cáncer.

"Esta investigación muestra el potencial del uso de TC para obtener una comprensión más profunda y matizada de la composición química del tejido y del tumor, a la que hasta ahora sólo se podía acceder a través del muestreo directo de tejido", dijo el profesor Eric Aboagye, del Departamento de Cirugía y Cáncer del Imperial. "Este método podría resultar particularmente beneficioso en países como el Reino Unido, donde la prevalencia del cáncer de pulmón es alta, y potencialmente transformar los protocolos de diagnóstico y tratamiento".

Enlaces relacionados:
Colegio Imperial de Londres

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Digital Radiographic System
OMNERA 300M
New
Multi-Use Ultrasound Table
Clinton
Opaque X-Ray Mobile Lead Barrier
2594M

Print article

Canales

Radiografía

ver canal
Imagen: La mamografía de la izquierda muestra tejido denso (blanco), pero no hay signos de cáncer. Dos años después, se desarrolló cáncer en la misma mama (derecha, tumor marcado con un círculo rojo) (Foto cortesía de Debbie Bennett/WashU Medicine)

Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías

Actualmente, no existe una manera de predecir quién está en riesgo de desarrollar cáncer de mama basándose únicamente en las imágenes de mamografías. Si bien existen algunas estrategias de reducción de... Más

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.