Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Herramienta de IA predice con precisión los resultados de la extracción de coágulos arteriales

Por el equipo editorial de MedImaging en español
Actualizado el 15 Sep 2024
Print article
Imagen: La herramienta AI predice los resultados del accidente cerebrovascular después de la eliminación del coágulo arterial con una precisión del 78% (foto cortesía de Adobe Stock)
Imagen: La herramienta AI predice los resultados del accidente cerebrovascular después de la eliminación del coágulo arterial con una precisión del 78% (foto cortesía de Adobe Stock)

En los protocolos actuales de tratamiento de los accidentes cerebrovasculares, las técnicas de diagnóstico por imagen avanzadas, en particular la angiografía por tomografía computarizada (ATC), desempeñan un papel crucial en la determinación de la estrategia de manejo para la oclusión de grandes vasos (OVG). La ATC es fundamental no solo para evaluar la elegibilidad del paciente para el tratamiento, sino también para analizar el suministro colateral arterial y predecir el pronóstico de los resultados funcionales del accidente cerebrovascular. Se sabe que es más sensible que la tomografía computarizada (TC) sin contraste para identificar los primeros signos de infarto. Además, investigaciones recientes han demostrado la utilidad de la ATC en el pronóstico a largo plazo. La llegada de la inteligencia artificial (IA) ha introducido modelos innovadores capaces de predecir los resultados a largo plazo basándose en las imágenes iniciales del accidente cerebrovascular. Estos modelos extraen datos pronósticos directamente de las ATC realizadas al momento de la admisión, proporcionando previsiones de los resultados de los pacientes. Ahora, un nuevo modelo de aprendizaje profundo puede predecir con precisión los resultados posquirúrgicos de los pacientes con accidente cerebrovascular por OVG a partir de exploraciones de ATC iniciales.

Un equipo de investigación dirigido por la Escuela de Medicina de Yale (New Haven, Connecticut, EUA) uutilizó datos de pacientes sometidos a trombectomías entre 2014 y 2020 para entrenar tres modelos distintos utilizando ATC de admisión. Estos modelos también consideraron variables como el tiempo hasta la cirugía, la edad, el sexo y las puntuaciones de la escala de accidentes cerebrovasculares del NIH. Esta investigación culminó en un modelo de aprendizaje profundo completamente automatizado que puede determinar con precisión los resultados del accidente cerebrovascular a partir de imágenes de admisión y varios escenarios de tratamiento, logrando una tasa de precisión del 78% en validaciones independientes. Según los investigadores, esta herramienta facilita la toma de decisiones rápida y precisa al establecer un "disparador de tratamiento" que podría iniciar la secuencia de tratamiento después de la cirugía. Los hallazgos de este estudio se publicaron en la revista Frontiers in Artificial Intelligence .

"El modelo de aprendizaje profundo desarrollado por nuestro equipo de investigación es el primer paso hacia la mecanización inteligente del protocolo de neuroimagenología del ictus", dijo el Dr. Sam Payabvash, profesor asociado de radiología e imágenes biomédicas y autor principal del estudio. "Cabe destacar que el modelo puede basarse únicamente en las angiografías por TC del cerebro, que invariablemente están presentes en el momento del diagnóstico del ictus. Por lo tanto, nuestro modelo basado en información de imágenes puede proporcionar predicciones rápidas y objetivas independientemente de la experiencia local y otras variabilidades, lo que orienta el tratamiento en comunidades con recursos limitados".

Enlaces relacionados:
Escuela de Medicina Yale

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Radiology Software
DxWorks
New
Ultrasound Imaging System
P12 Elite

Print article
Radcal

Canales

Radiografía

ver canal
Imagen: El nuevo detector de rayos X produce una radiografía de alta calidad (foto cortesía de ACS Central Science 2024, https://doi.org/10.1021/acscentsci.4c01296)

Detector altamente sensible y plegable hace que la radiografía sea más segura

Los rayos X se utilizan ampliamente en pruebas de diagnóstico y monitoreo industrial, desde controles dentales hasta escaneos de equipaje en aeropuertos. Sin embargo, estos rayos de alta energía... Más

RM

ver canal
Imagen: Imágenes por RM antígeno de membrana específico de próstata, PET-CT, y tinción con hematoxilina y eosina de tres casos representativos (foto cortesía del profesor Nianzeng Xing. Doi: 10.1097/cm9.0000000000003204)

Combinación de técnicas de imagen permitiría extirpar el cáncer de próstata sin biopsia

El cáncer de próstata es uno de los cánceres más frecuentes en los hombres. Tradicionalmente, el cáncer de próstata se diagnostica mediante una biopsia, en la que se obtiene una pequeña muestra de tejido... Más

Ultrasonido

ver canal
Imagen: un prototipo del dispositivo desarrollado (foto cortesía de KTU)

Dispositivo de ultrasonido mejora de forma no invasiva la circulación sanguínea en las extremidades inferiores

La circulación sanguínea deficiente en las extremidades inferiores es un problema de salud común entre los ancianos y es una complicación significativa de la diabetes, a menudo... Más

Medicina Nuclear

ver canal
Imagen: Ejemplo de análisis de IA de imágenes PET/TC (foto cortesía de Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

Análisis de IA de imágenes PET/TC predice efectos secundarios de la inmunoterapia en cáncer de pulmón

La inmunoterapia ha avanzado significativamente en el tratamiento del cáncer de pulmón primario, pero a veces puede provocar un efecto secundario grave conocido como enfermedad pulmonar intersticial.... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.