Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de IA alcanza precisión a nivel clínico experto al analizar imágenes por resonancia magnética complejas y escaneos médicas 3D

Por el equipo editorial de MedImaging en español
Actualizado el 18 Oct 2024
Print article
Imagen: El nuevo modelo de IA alcanza de manera eficiente una precisión de nivel clínico experto en escaneos médicas complejas (foto cortesía de Leticia Ortiz/UCLA)
Imagen: El nuevo modelo de IA alcanza de manera eficiente una precisión de nivel clínico experto en escaneos médicas complejas (foto cortesía de Leticia Ortiz/UCLA)

Las redes neuronales artificiales se entrenan realizando cálculos repetidos sobre grandes conjuntos de datos que han sido cuidadosamente examinados y etiquetados por expertos clínicos. Mientras que las imágenes 2D estándar muestran longitud y anchura, las tecnologías de imágenes 3D introducen profundidad, creando imágenes "volumétricas" que requieren más tiempo, habilidad y atención para la interpretación experta. Por ejemplo, una exploración de imágenes de retina 3D puede constar de casi 100 imágenes 2D, lo que requiere varios minutos de examen minucioso por parte de un especialista altamente capacitado para identificar biomarcadores sutiles de la enfermedad, como medir el volumen de una hinchazón anatómica. Ahora, los investigadores han desarrollado un marco de aprendizaje profundo que se entrena rápidamente para analizar y diagnosticar automáticamente las resonancias magnéticas y otras imágenes médicas 3D, logrando una precisión comparable a la de los expertos médicos, pero en una fracción del tiempo.

A diferencia de otros modelos en desarrollo para el análisis de imágenes en 3D, el nuevo marco creado por investigadores de UCLA (Los Ángeles, CA, EUA) es muy adaptable a diversas modalidades de obtención de imágenes. Se ha estudiado con exploraciones de retina en 3D (tomografía de coherencia óptica) para biomarcadores de riesgo de enfermedades, videos de ultrasonidos para la evaluación de la función cardíaca, exploraciones de resonancia magnética en 3D para evaluar la gravedad de la enfermedad hepática y exploraciones de TC en 3D para la detección de neoplasias malignas en nódulos torácicos. En un artículo publicado en la revista Nature Biomedical Engineering, los investigadores destacan las amplias capacidades del sistema, lo que sugiere que podría ser valioso en muchos otros entornos clínicos. Se planean estudios adicionales para explorar más a fondo sus aplicaciones.

El modelo de la UCLA, llamado SLIViT (SLice Integration by Vision Transformer), presenta una combinación única de dos componentes de inteligencia artificial y un enfoque de aprendizaje especializado. Según los investigadores, esta combinación le permite predecir con precisión los factores de riesgo de enfermedades a partir de exploraciones médicas en múltiples modalidades volumétricas, incluso con conjuntos de datos etiquetados de tamaño moderado. La anotación automatizada de SLIViT podría beneficiar tanto a los pacientes como a los médicos al mejorar la eficiencia y la puntualidad del diagnóstico, al tiempo que avanza en la investigación médica al reducir los costos de adquisición de datos y acortar el tiempo necesario para la recopilación de datos. Además, establece un modelo fundamental que puede acelerar el desarrollo de futuros modelos predictivos.

“SLIViT supera el cuello de botella del tamaño del conjunto de datos de entrenamiento aprovechando el 'conocimiento médico' previo del dominio 2D más accesible”, dijo Berkin Durmus, estudiante de doctorado de la UCLA y coautor principal del artículo. “Mostramos que SLIViT, a pesar de ser un modelo genérico, logra consistentemente un rendimiento significativamente mejor en comparación con los modelos de vanguardia específicos del dominio. Tiene potencial de aplicabilidad clínica, igualando la precisión de la experiencia manual de los especialistas clínicos al tiempo que reduce el tiempo en un factor de 5.000. Y a diferencia de otros métodos, SLIViT es lo suficientemente flexible y robusto como para trabajar con conjuntos de datos clínicos que no siempre están en perfecto orden”.

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
Ultra-Flat DR Detector
meX+1717SCC
New
Mobile Barrier
Tilted Mobile Leaded Barrier
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Print article

Canales

Radiografía

ver canal
Imagen: La mamografía de la izquierda muestra tejido denso (blanco), pero no hay signos de cáncer. Dos años después, se desarrolló cáncer en la misma mama (derecha, tumor marcado con un círculo rojo) (Foto cortesía de Debbie Bennett/WashU Medicine)

Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías

Actualmente, no existe una manera de predecir quién está en riesgo de desarrollar cáncer de mama basándose únicamente en las imágenes de mamografías. Si bien existen algunas estrategias de reducción de... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

Imaginología General

ver canal
Imagen: La investigación abre el camino para un dispositivo de imágenes seguro y lo suficientemente pequeño como para colocarlo en una ambulancia (foto cortesía de la Universidad de Aberdeen)

Nuevo escáner identifica daños cerebrales en pacientes con ictus en campos magnéticos más bajos

Los investigadores han desarrollado un nuevo tipo de escáner médico que puede identificar daños cerebrales en pacientes con accidente cerebrovascular (ACV) utilizando campos magnéticos... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.