Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Liberan enorme base de datos de imágenes de TC para pruebas con IA

Por el equipo editorial de MedImaging en español
Actualizado el 06 Aug 2018
Print article
El Centro Clínico de los Institutos Nacionales de la Salud (NIH, Bethesda, MA, EUA) ha puesto a disposición del público un conjunto de datos a gran escala de imágenes de TC para ayudar a la comunidad científica a mejorar la exactitud de detección de las lesiones. El conjunto de datos, llamado DeepLesion, tiene más de 32.000 lesiones anotadas, identificadas en las imágenes de TC, en comparación con menos de mil lesiones en la mayoría de los conjuntos de datos de imágenes médicas disponibles públicamente. Las imágenes son de 4.400 pacientes únicos, que son socios de investigación en los NIH y han sido completamente anónimos. En 2017, el centro clínico de los NIH publicó imágenes anónimas de rayos X de tórax y sus datos correspondientes.

El centro clínico de los NIH es el hospital de investigación clínica para los NIH, la agencia de investigación médica de los EUA, que incluye 27 institutos y centros y es un componente del Departamento de Salud y Servicios Humanos de los EUA Los NIH son la principal agencia federal que realiza y respalda la investigación médica básica, clínica y traslacional e investiga las causas, los tratamientos y las curas de las enfermedades tanto comunes como raras.

Los radiólogos en el centro clínico usan una herramienta de señal electrónica para medir y marcar los hallazgos clínicamente significativos de las imágenes de TC de los pacientes. Los radiólogos guardan el sitio encontrado y marcan los hallazgos significativos, que pueden visitar nuevamente en otro momento. Estos marcadores complejos proporcionan flechas, líneas, diámetros y texto que permiten identificar la ubicación precisa y el tamaño de una lesión para facilitar que los expertos identifiquen el crecimiento o una nueva enfermedad.

Los científicos en el centro clínico de los NIH han utilizado estos marcadores, que son abundantes con datos médicos retrospectivos, para desarrollar el conjunto de datos DeepLesion. A diferencia de la mayoría de los conjuntos de datos de imágenes médicas de lesiones disponibles actualmente que solo pueden detectar un tipo de lesión, DeepLesion ofrece una mayor diversidad ya que contiene todo tipo de hallazgos de radiología crítica de todo el cuerpo, como nódulos pulmonares, tumores hepáticos, ganglios linfáticos agrandados y otros. El conjunto de datos publicado por los NIH es lo suficientemente grande como para formar una red neuronal profunda y podría permitir a la comunidad científica crear un detector de lesiones universales a gran escala con un marco unificado.

Los investigadores esperan que al hacer públicos los conjuntos de datos de imágenes médicas, otros puedan desarrollar un detector de lesiones universal que ayudará a los radiólogos a identificar todo tipo de lesiones. También puede servir como una herramienta de detección inicial y enviar sus resultados de detección a otros sistemas especializados entrenados en ciertos tipos de lesiones. DeepLesion también podría ayudar a los radiólogos a extraer y estudiar la relación entre los diferentes tipos de lesiones con el fin de hacer nuevos descubrimientos. Puede permitirles medir de forma más exacta y automática los tamaños de todas las lesiones en un paciente, lo que permite la evaluación completa del cáncer.

El centro clínico NIH planea continuar mejorando el conjunto de datos DeepLesion al recopilar más datos y aumentar aún más su exactitud de detección. Su capacidad universal de detección de lesiones se volverá más confiable luego de que los investigadores logren aprovechar la información en 3D y del tipo de lesiones. En el futuro, la aplicación DeepLesion podría ampliarse a otras modalidades de imagenología como la resonancia magnética y combinarse con datos de varios hospitales.

New
Digital X-Ray Detector Panel
Acuity G4
Ultrasound Imaging System
P12 Elite
Ultrasound Scanner
TBP-5533
Miembro Plata
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform

Print article

Canales

Radiografía

ver canal
Imagen:Los gráficos ilustran cómo se ven las imágenes 3D con XACT con ejemplos del logotipo de la UC a la izquierda y una muestra de hueso a la derecha (foto cortesía de la Escuela de Medicina de UCI)

Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación

La tomografía computarizada (TC) ha sido durante mucho tiempo una herramienta esencial en la obtención de imágenes modernas, ya que ofrece vistas 3D detalladas del cuerpo humano y otros materiales.... Más

Ultrasonido

ver canal
Imagen: La incorporación de la ecografía POC puede mejorar la atención obstétrica en el primer trimestre (cortesía de la foto de 123RF)

Ecografía POC mejora la atención en las primeras etapas del embarazo y reduce las visitas a urgencias

Un nuevo estudio ha descubierto que la implementación de ultrasonidos en el punto de atención (POCUS) en clínicas para evaluar la viabilidad y la edad gestacional de los embarazos... Más

Medicina Nuclear

ver canal
Imagen: La combinación de imágenes avanzadas permitió a los investigadores determinar las regiones metabólicamente más activas o agresivas del glioblastoma (Foto cortesía de Mayo Clinic)

Una combinación de tecnologías de imágenes avanzadas ofrece un avance en el tratamiento del glioblastoma

El glioblastoma es la forma más mortal de cáncer cerebral primario, en gran medida debido a su crecimiento agresivo y su resistencia al tratamiento. El tumor se infiltra en el tejido cerebral... Más

Imaginología General

ver canal
Imagen: Los métodos automatizados permiten el análisis de exploraciones PET/CT (izquierda) para predecir con precisión la ubicación y el tamaño del tumor (derecha)(Foto cortesía de Nature Machine Intelligence, 2024. DOI: 10.1038/S42256-024-00912-9)

Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC

Las técnicas de diagnóstico por imágenes son esenciales para el diagnóstico del cáncer, ya que determinar con precisión la ubicación, el tamaño y el tipo de tumores es fundamental para seleccionar el tratamiento... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.