Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




La IA y la resonancia magnética funcional muestran como el cerebro conecta las memorias para resolver problemas

Por el equipo editorial de MedImaging en español
Actualizado el 10 Oct 2018
Print article
Un equipo de neurocientíficos alemanes e investigadores de Inteligencia Artificial (IA) publicaron los resultados de su estudio que proporcionó información sobre la forma en que el cerebro humano conecta las memorias episódicas individuales o las memorias de eventos específicos para resolver problemas.

Si bien se sabe que los humanos tienen la capacidad de combinar creativamente sus recuerdos para resolver problemas, aún no está claro cómo las personas usan sus recuerdos episódicos para llegar a ideas nuevas. Según el equipo de investigadores, un nuevo mecanismo cerebral permite que las memorias recuperadas desencadenen la recuperación de otras memorias relacionadas, lo que permite la recuperación de múltiples memorias vinculadas y hace que el cerebro cree ideas.

Han sugerido que los recuerdos individuales se almacenan como rastros de memoria separados en una región del cerebro llamada hipocampo. Su nueva teoría explora una conexión anatómica desatendida que hace un circuito saliendo del hipocampo a la corteza entorrinal vecina paro luego volver a entrar. Los investigadores creen que es esta conexión recurrente la que permite recuperar los recuerdos del hipocampo para desencadenar la recuperación de otros recuerdos relacionados. Los investigadores probaron esta teoría tomando exámenes de resonancia magnética funcional 7-Tesla de alta resolución de 26 hombres y mujeres jóvenes mientras realizaban una tarea que les exigía obtener información sobre eventos diferentes. Los investigadores mostraron a los voluntarios pares de fotografías: una de una cara y otra de un objeto o un lugar. Cada objeto y lugar individual aparecía en dos pares de fotos separados, cada uno de ellos incluía una cara diferente. Esto significó que cada par de fotos se vinculó con otro par a través del objeto compartido o la imagen del lugar.

En la segunda fase del estudio, se evaluó si los participantes podían inferir la conexión indirecta entre estos pares de fotos vinculados mostrando una cara y pidiéndoles que eligieran entre otras dos caras. Una de las opciones, la correcta, se emparejó con el mismo objeto o imagen del lugar, y una no. Los investigadores esperaban que la cara presentada activara la recuperación del objeto o lugar emparejado y, por lo tanto, activara la actividad cerebral que pasaría del hipocampo a la corteza entorrinal. Los investigadores también esperaban evidencia de que esta actividad volviera al hipocampo para desencadenar la recuperación de la cara enlazada correcta. Los investigadores entrenaron un algoritmo de computadora para poder diferenciar entre la activación de escenas y objetos dentro de estas regiones de entrada y salida. El algoritmo se aplicó cuando solo se mostraban caras en la pantalla. Si el algoritmo indicaba la presencia de información sobre la escena o el objeto en estos ensayos, solo podría ser controlado por memorias recuperadas de la escena vinculada o de las fotos de objetos.

"Nuestros datos mostraron que cuando el hipocampo recupera una memoria, no se la pasa al resto del cerebro", dijo Dharshan Kumaran, un investigador que formó parte del estudio. "En cambio, recircula la activación de vuelta al hipocampo, lo que desencadena la recuperación de otros recuerdos relacionados".

Los investigadores creen que sus resultados podrían ayudar a la IA a aprender más rápido en el futuro. "Si bien hay muchos dominios en los que la inteligencia artificial es superior, los humanos aún tienen una ventaja cuando las tareas dependen del uso flexible de la memoria episódica", dijo Martin Chadwick, otro investigador que formó parte del estudio. "Si podemos entender los mecanismos que permiten a las personas hacer esto, la esperanza es poder replicarlos dentro de nuestros sistemas de inteligencia artificial, brindándoles una capacidad mucho mayor para resolver rápidamente problemas nuevos".

Enlace relacionado:
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition
NMUS & MSK Ultrasound
InVisus Pro
Ultra-Flat DR Detector
meX+1717SCC
New
Transducer Covers
Surgi Intraoperative Covers

Print article

Canales

Radiografía

ver canal
Imagen:Los gráficos ilustran cómo se ven las imágenes 3D con XACT con ejemplos del logotipo de la UC a la izquierda y una muestra de hueso a la derecha (foto cortesía de la Escuela de Medicina de UCI)

Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación

La tomografía computarizada (TC) ha sido durante mucho tiempo una herramienta esencial en la obtención de imágenes modernas, ya que ofrece vistas 3D detalladas del cuerpo humano y otros materiales.... Más

Ultrasonido

ver canal
Imagen: La incorporación de la ecografía POC puede mejorar la atención obstétrica en el primer trimestre (cortesía de la foto de 123RF)

Ecografía POC mejora la atención en las primeras etapas del embarazo y reduce las visitas a urgencias

Un nuevo estudio ha descubierto que la implementación de ultrasonidos en el punto de atención (POCUS) en clínicas para evaluar la viabilidad y la edad gestacional de los embarazos... Más

Medicina Nuclear

ver canal
Imagen: La combinación de imágenes avanzadas permitió a los investigadores determinar las regiones metabólicamente más activas o agresivas del glioblastoma (Foto cortesía de Mayo Clinic)

Una combinación de tecnologías de imágenes avanzadas ofrece un avance en el tratamiento del glioblastoma

El glioblastoma es la forma más mortal de cáncer cerebral primario, en gran medida debido a su crecimiento agresivo y su resistencia al tratamiento. El tumor se infiltra en el tejido cerebral... Más

Imaginología General

ver canal
Imagen: Los métodos automatizados permiten el análisis de exploraciones PET/CT (izquierda) para predecir con precisión la ubicación y el tamaño del tumor (derecha)(Foto cortesía de Nature Machine Intelligence, 2024. DOI: 10.1038/S42256-024-00912-9)

Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC

Las técnicas de diagnóstico por imágenes son esenciales para el diagnóstico del cáncer, ya que determinar con precisión la ubicación, el tamaño y el tipo de tumores es fundamental para seleccionar el tratamiento... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.