Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Los científicos usan el aprendizaje automático y los exámenes de resonancia magnética para predecir las dificultades de aprendizaje

Por el equipo editorial de MedImaging en español
Actualizado el 17 Oct 2018
Print article
Un equipo de científicos de la Unidad de Cognición y Ciencias del Cerebro del Consejo de Investigación Médica (MRC) de la Universidad de Cambridge (Cambridge, Inglaterra, Reino Unido) utilizó el aprendizaje automático, un tipo de inteligencia artificial, con datos de cientos de niños que luchan en la escuela para identificar grupos de dificultades de aprendizaje, que no coinciden con su diagnóstico anterior. Según los investigadores, esto refuerza la necesidad de que los niños reciban evaluaciones detalladas de sus habilidades cognitivas para identificar el mejor tipo de apoyo.

Para el estudio, los investigadores reclutaron a 550 niños que habían sido remitidos a una clínica porque tenían dificultades en la escuela. Las investigaciones anteriores sobre las dificultades de aprendizaje se habían centrado en niños a los que ya se les había diagnosticado una dificultad particular, como el trastorno por déficit de atención con hiperactividad (TDAH), un trastorno del espectro autista o dislexia. El último estudio incluyó a niños con todas las dificultades, independientemente de su diagnóstico, para capturar mejor el rango de dificultades entre ellas y la superposición de las categorías de diagnóstico.

Los investigadores aplicaron el aprendizaje automático a un amplio espectro de cientos de estudiantes con dificultades al proporcionarle al algoritmo informático una gran cantidad de datos de pruebas cognitivas de cada niño, incluidas las medidas de audición, el razonamiento espacial, la resolución de problemas, el vocabulario y la memoria. Basado en estos datos, el algoritmo sugirió que los niños encajan mejor en cuatro grupos de dificultades. Estos grupos se alinearon estrechamente con otros datos sobre los niños, como los informes de los padres sobre sus dificultades de comunicación y los datos educativos sobre lectura y matemáticas.

Sin embargo, no hubo correspondencia con sus diagnósticos previos. Con el fin de verificar si estas agrupaciones correspondían a diferencias biológicas, los grupos se verificaron en las resonancias magnéticas cerebrales de 184 niños. Las agrupaciones reflejaban patrones de conectividad en partes del cerebro de los niños, lo que sugiere que el aprendizaje automático identificaba diferencias que reflejan en parte la biología subyacente. Dos de los cuatro grupos identificados fueron: dificultades con las habilidades de memoria de trabajo y dificultades con el procesamiento de sonidos en palabras. Los otros dos grupos identificados fueron: niños con amplias dificultades cognitivas en muchas áreas, y niños con resultados de pruebas cognitivas típicas para su edad. Los investigadores notaron que los niños en la agrupación que tenían resultados de pruebas cognitivas que eran típicos para su edad podían tener, en todo caso, otras dificultades que afectaban su escolarización, como las dificultades de comportamiento, que no se habían incluido en el aprendizaje automático.

"Nuestro estudio es el primero de su tipo en aplicar el aprendizaje automático a un amplio espectro de cientos de estudiantes con dificultades", dijo el Dr. Duncan Astle, de la Unidad de Cognición y Ciencias del Cerebro del MRC en la Universidad de Cambridge, quien dirigió el estudio.

"Estos son hallazgos interesantes en una etapa temprana que comienzan a investigar cómo podemos aplicar nuevas tecnologías, como el aprendizaje automático, para comprender mejor la función cerebral", dijo la Dra. Joanna Latimer, Directora de Neurociencias y Salud Mental del MRC.


Enlace relacionado:
Universidad de Cambridge

NMUS & MSK Ultrasound
InVisus Pro
New
Transducer Covers
Surgi Intraoperative Covers
Portable Color Doppler Ultrasound Scanner
DCU10
Multi-Use Ultrasound Table
Clinton

Print article

Canales

Radiografía

ver canal
Imagen:Los gráficos ilustran cómo se ven las imágenes 3D con XACT con ejemplos del logotipo de la UC a la izquierda y una muestra de hueso a la derecha (foto cortesía de la Escuela de Medicina de UCI)

Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación

La tomografía computarizada (TC) ha sido durante mucho tiempo una herramienta esencial en la obtención de imágenes modernas, ya que ofrece vistas 3D detalladas del cuerpo humano y otros materiales.... Más

Ultrasonido

ver canal
Imagen: La incorporación de la ecografía POC puede mejorar la atención obstétrica en el primer trimestre (cortesía de la foto de 123RF)

Ecografía POC mejora la atención en las primeras etapas del embarazo y reduce las visitas a urgencias

Un nuevo estudio ha descubierto que la implementación de ultrasonidos en el punto de atención (POCUS) en clínicas para evaluar la viabilidad y la edad gestacional de los embarazos... Más

Medicina Nuclear

ver canal
Imagen: La combinación de imágenes avanzadas permitió a los investigadores determinar las regiones metabólicamente más activas o agresivas del glioblastoma (Foto cortesía de Mayo Clinic)

Una combinación de tecnologías de imágenes avanzadas ofrece un avance en el tratamiento del glioblastoma

El glioblastoma es la forma más mortal de cáncer cerebral primario, en gran medida debido a su crecimiento agresivo y su resistencia al tratamiento. El tumor se infiltra en el tejido cerebral... Más

Imaginología General

ver canal
Imagen: Los métodos automatizados permiten el análisis de exploraciones PET/CT (izquierda) para predecir con precisión la ubicación y el tamaño del tumor (derecha)(Foto cortesía de Nature Machine Intelligence, 2024. DOI: 10.1038/S42256-024-00912-9)

Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC

Las técnicas de diagnóstico por imágenes son esenciales para el diagnóstico del cáncer, ya que determinar con precisión la ubicación, el tamaño y el tipo de tumores es fundamental para seleccionar el tratamiento... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.