Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un algoritmo IA supera a los expertos humanos en identificar el pre-cáncer de cuello uterino

Por el equipo editorial de MedImaging en español
Actualizado el 30 Jan 2019
Print article
Investigadores de los Institutos Nacionales de Salud (Bethesda, MA, EUA) han desarrollado un algoritmo de computador que puede analizar imágenes digitales del cuello uterino de una mujer e identificar cambios pre-cancerosos que requieren atención médica. El método de inteligencia artificial (IA), llamado evaluación visual automatizada, puede revolucionar potencialmente el cribado para el cáncer de cuello uterino, especialmente en sitios de bajos recursos.

Los trabajadores de la salud pueden realizar fácilmente la evaluación visual automatizada usando un teléfono celular o un dispositivo de cámara similar para la tamización del cuello uterino y el tratamiento durante una sola consulta. Adicionalmente, el enfoque puede ser realizado con entrenamiento mínimo, haciéndolo ideal para los países con recursos de salud limitados, donde el cáncer de cuello uterino es una causa importante de enfermedad y mortalidad entre las mujeres.

Los investigadores desarrollaron el método usando bases de datos completas para “entrenar” un algoritmo de aprendizaje profundo o automático para reconocer patrones en entradas visuales complejas, como son las imágenes médicas. Crearon un algoritmo usando más de 60.000 imágenes de cuellos uterinos de un archivo de fotografías del Instituto Nacional de Cáncer (INC) que fueron recolectadas durante un estudio de tamización de cáncer de cuello uterino realizado en Costa Rica en los años 1990. Más de 9.400 mujeres participaron en ese estudio de población, con un seguimiento de hasta 18 años. La naturaleza prospectiva del estudio les permitió a los investigadores obtener información casi completa de cuáles cambios en el cuello uterino se volvieron pre-cancerosos y cuáles no. Las fotografías fueron digitalizadas y usadas para entrenar un algoritmo de aprendizaje profundo de manera que pudieran diferenciar entre las condiciones del cuello uterino que requieren tratamiento y aquellas que no lo requieren.

Los investigadores ahora planean entrenar más el algoritmo en una muestra de imágenes representativas de precánceres de cuello uterino y de tejido cervical normal de mujeres en comunidades alrededor del mundo, usando una variedad de cámaras y otras opciones de imagenología con el objetivo de crear el mejor algoritmo posible para el uso común, abierto.

“Nuestros hallazgos muestran que un algoritmo de aprendizaje profundo puede usar imágenes recolectadas durante la tamización rutinaria para el cáncer de cuello uterino con el fin de identificar cambios precancerosos que, si no son tratados, pueden convertirse en cáncer”, dijo Mark Schiffman, M.D, M.P.H., de la División de Epidemiología y Genética del Cáncer del INC, y autor principal del estudio. “En efecto, el análisis de computador de las imágenes fue mejor en la identificación del precáncer que un revisor experto humano de pruebas de Pap observando el microscopio (citología)”.

“Cuando este algoritmo se combine con los avances en vacunación de VPH, las tecnologías emergentes de detección de VPH, y mejoras en el tratamiento, es posible que se pueda controlar el cáncer de cuello uterino, aún en entornos de bajos recursos”, dijo Maurizio Vecchione, vicepresidente ejecutivo de Global Good, un fondo en Empresas Intelectuales, que colaboró con los investigadores del INC para crear este método.

Enlace relacionado:
Institutos Nacionales de Salud

New
Digital Radiographic System
OMNERA 300M
New
Digital Radiography System
DigiEye 330
Radiology Software
DxWorks
40/80-Slice CT System
uCT 528

Print article

Canales

Radiografía

ver canal
Imagen:Los gráficos ilustran cómo se ven las imágenes 3D con XACT con ejemplos del logotipo de la UC a la izquierda y una muestra de hueso a la derecha (foto cortesía de la Escuela de Medicina de UCI)

Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación

La tomografía computarizada (TC) ha sido durante mucho tiempo una herramienta esencial en la obtención de imágenes modernas, ya que ofrece vistas 3D detalladas del cuerpo humano y otros materiales.... Más

Ultrasonido

ver canal
Imagen: La incorporación de la ecografía POC puede mejorar la atención obstétrica en el primer trimestre (cortesía de la foto de 123RF)

Ecografía POC mejora la atención en las primeras etapas del embarazo y reduce las visitas a urgencias

Un nuevo estudio ha descubierto que la implementación de ultrasonidos en el punto de atención (POCUS) en clínicas para evaluar la viabilidad y la edad gestacional de los embarazos... Más

Medicina Nuclear

ver canal
Imagen: La combinación de imágenes avanzadas permitió a los investigadores determinar las regiones metabólicamente más activas o agresivas del glioblastoma (Foto cortesía de Mayo Clinic)

Una combinación de tecnologías de imágenes avanzadas ofrece un avance en el tratamiento del glioblastoma

El glioblastoma es la forma más mortal de cáncer cerebral primario, en gran medida debido a su crecimiento agresivo y su resistencia al tratamiento. El tumor se infiltra en el tejido cerebral... Más

Imaginología General

ver canal
Imagen: Los métodos automatizados permiten el análisis de exploraciones PET/CT (izquierda) para predecir con precisión la ubicación y el tamaño del tumor (derecha)(Foto cortesía de Nature Machine Intelligence, 2024. DOI: 10.1038/S42256-024-00912-9)

Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC

Las técnicas de diagnóstico por imágenes son esenciales para el diagnóstico del cáncer, ya que determinar con precisión la ubicación, el tamaño y el tipo de tumores es fundamental para seleccionar el tratamiento... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.