Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un método de aprendizaje automático puede evitarles a las mujeres cirugías innecesarias de mama

Por el equipo editorial de MedImaging en español
Actualizado el 25 Mar 2019
Print article
Un equipo de investigadores de la Facultad de Medicina Geisel en Dartmouth (Hanover, NH, EUA) desarrolló un método de aprendizaje automático para predecir la conversión de la hiperplasia ductal atípica (HDA) a cáncer.

La HDA, una lesión mamaria asociada con un aumento de cuatro a cinco veces en el riesgo de cáncer de mama, se encuentra principalmente mediante mamografía y se identifica en la biopsia con aguja gruesa. A pesar de los múltiples pases de la lesión durante la biopsia, solo se muestrean algunas porciones de las lesiones. Otros factores variables influyen en el muestreo y la exactitud, de modo que la presencia de cáncer puede subestimarse en un 10-45%. Actualmente, se recomienda la extirpación quirúrgica para todos los casos de HDA encontrados en las biopsias con aguja gruesa con el fin de determinar si la lesión es cancerosa. Alrededor del 20-30% de los casos de HDA se convierten en cáncer después de la escisión quirúrgica. Sin embargo, esto significa que 70-80% de las mujeres se realizan un procedimiento quirúrgico invasivo y costoso para una lesión benigna (pero de alto riesgo).

El nuevo método de aprendizaje automático para predecir la conversión de HDA a cáncer puede ayudar a los clínicos y pacientes de bajo riesgo a decidir si la vigilancia activa y la terapia hormonal son una alternativa razonable a la escisión quirúrgica. Una evaluación del modelo, realizada por los investigadores, mostró que el método de aprendizaje automático puede identificar el 98% de todos los casos malignos antes de la cirugía, evitando que el 16% de las mujeres se hubieran hecho una operación innecesaria para una lesión benigna. Los investigadores ahora planean expandir el alcance de su modelo al incluir otras lesiones mamarias de alto riesgo, como neoplasia lobular, papilomas y cicatrices radiales. También planean seguir validando su método en grandes conjuntos de datos externos utilizando registros estatales y nacionales de cáncer de mama, y colaborando con otros centros médicos.

“Nuestros resultados sugieren que existen sólidas diferencias clínicas entre las mujeres con un riesgo bajo en comparación con un alto riesgo de que la HDA se convierta en cáncer según los datos de la biopsia con aguja gruesa que le permitieron a nuestro modelo de aprendizaje automático predecir de manera confiable las actualizaciones de malignidad en nuestro conjunto de datos”, dijo Saeed Hassanpour, PhD, quien lideró el equipo de investigación de Dartmouth. “Este estudio también identificó importantes variables clínicas involucradas en el riesgo de actualización de HDA”.

“Nuestro modelo puede ayudar potencialmente a las pacientes y médicos a elegir un método de manejo alternativo en casos de bajo riesgo”, agregó Hassanpour. “En la era de la medicina personalizada, estos modelos pueden ser deseables para los pacientes que valoran un enfoque compartido de toma de decisiones con la capacidad de elegir entre la escisión quirúrgica para tener certeza, versus la vigilancia para evitar el costo, el estrés y los posibles efectos secundarios en mujeres con bajo riesgo para que la HDA se convierta en cáncer”.

Enlace relacionado:
Facultad de Medicina Geisel en Dartmouth

Portable Color Doppler Ultrasound Scanner
DCU10
3T MRI Scanner
MAGNETOM Cima.X
New
X-ray Diagnostic System
FDX Visionary-A
Ultrasound Imaging System
P12 Elite

Print article

Canales

Radiografía

ver canal
Imagen:Los gráficos ilustran cómo se ven las imágenes 3D con XACT con ejemplos del logotipo de la UC a la izquierda y una muestra de hueso a la derecha (foto cortesía de la Escuela de Medicina de UCI)

Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación

La tomografía computarizada (TC) ha sido durante mucho tiempo una herramienta esencial en la obtención de imágenes modernas, ya que ofrece vistas 3D detalladas del cuerpo humano y otros materiales.... Más

Ultrasonido

ver canal
Imagen: La incorporación de la ecografía POC puede mejorar la atención obstétrica en el primer trimestre (cortesía de la foto de 123RF)

Ecografía POC mejora la atención en las primeras etapas del embarazo y reduce las visitas a urgencias

Un nuevo estudio ha descubierto que la implementación de ultrasonidos en el punto de atención (POCUS) en clínicas para evaluar la viabilidad y la edad gestacional de los embarazos... Más

Medicina Nuclear

ver canal
Imagen: La combinación de imágenes avanzadas permitió a los investigadores determinar las regiones metabólicamente más activas o agresivas del glioblastoma (Foto cortesía de Mayo Clinic)

Una combinación de tecnologías de imágenes avanzadas ofrece un avance en el tratamiento del glioblastoma

El glioblastoma es la forma más mortal de cáncer cerebral primario, en gran medida debido a su crecimiento agresivo y su resistencia al tratamiento. El tumor se infiltra en el tejido cerebral... Más

Imaginología General

ver canal
Imagen: Los métodos automatizados permiten el análisis de exploraciones PET/CT (izquierda) para predecir con precisión la ubicación y el tamaño del tumor (derecha)(Foto cortesía de Nature Machine Intelligence, 2024. DOI: 10.1038/S42256-024-00912-9)

Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC

Las técnicas de diagnóstico por imágenes son esenciales para el diagnóstico del cáncer, ya que determinar con precisión la ubicación, el tamaño y el tipo de tumores es fundamental para seleccionar el tratamiento... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.