Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un sistema nuevo de IA es tan bueno como los radiólogos para detectar el cáncer de próstata

Por el equipo editorial de MedImaging en español
Actualizado el 01 May 2019
Print article
Investigadores de la Universidad de California {(UCLA), Los Ángeles, CA, EUA} desarrollaron un sistema nuevo de inteligencia artificial (IA) para ayudar a los radiólogos a mejorar su capacidad para diagnosticar el cáncer de próstata. El sistema, llamado FocalNet, ayuda a identificar y predecir la agresividad de la enfermedad evaluando las imágenes de resonancia magnética (RM) con casi el mismo nivel de exactitud que los radiólogos experimentados.

En general, los radiólogos usan la RM para detectar y evaluar la agresividad de los tumores malignos de próstata. Sin embargo, esto requiere practicar en miles de exámenes para aprender a determinar con exactitud si un tumor es canceroso o benigno y para determinar con exactitud el grado del cáncer. Además, muchos hospitales carecen de los recursos para implementar la capacitación altamente especializada requerida para detectar el cáncer usando la resonancia magnética.

FocalNet es una red neuronal artificial que puede ayudar a los radiólogos a mejorar su capacidad para diagnosticar el cáncer de próstata mediante el uso de un algoritmo que comprende más de un millón de variables entrenables. Los investigadores de la UCLA entrenaron el sistema haciéndolo analizar las imágenes por resonancia magnética de 417 hombres con cáncer de próstata. Los resultados de los exámenes se introdujeron en el sistema para que pudiera aprender a evaluar y clasificar los tumores de manera coherente y comparar los resultados con la muestras de patología real. Los investigadores probaron FocalNet y encontraron que tenía un 80,5% de exactitud en la lectura de las resonancias magnéticas, en comparación con los radiólogos que tenían al menos 10 años de experiencia y que tenían un 83,9% de exactitud. Esto sugiere que un sistema de IA podría ahorrar tiempo y proporcionar, potencialmente, orientación de diagnóstico a los radiólogos con menos experiencia.

Enlace relacionado:
Universidad de California

New
Diagnostic Ultrasound System
MS1700C
New
Digital Radiographic System
OMNERA 300M
Multi-Use Ultrasound Table
Clinton
New
Mammo 3D Performance Kits
Mammo 3D Performance Kits

Print article

Canales

Radiografía

ver canal
Imagen:Los gráficos ilustran cómo se ven las imágenes 3D con XACT con ejemplos del logotipo de la UC a la izquierda y una muestra de hueso a la derecha (foto cortesía de la Escuela de Medicina de UCI)

Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación

La tomografía computarizada (TC) ha sido durante mucho tiempo una herramienta esencial en la obtención de imágenes modernas, ya que ofrece vistas 3D detalladas del cuerpo humano y otros materiales.... Más

Ultrasonido

ver canal
Imagen: La incorporación de la ecografía POC puede mejorar la atención obstétrica en el primer trimestre (cortesía de la foto de 123RF)

Ecografía POC mejora la atención en las primeras etapas del embarazo y reduce las visitas a urgencias

Un nuevo estudio ha descubierto que la implementación de ultrasonidos en el punto de atención (POCUS) en clínicas para evaluar la viabilidad y la edad gestacional de los embarazos... Más

Medicina Nuclear

ver canal
Imagen: La combinación de imágenes avanzadas permitió a los investigadores determinar las regiones metabólicamente más activas o agresivas del glioblastoma (Foto cortesía de Mayo Clinic)

Una combinación de tecnologías de imágenes avanzadas ofrece un avance en el tratamiento del glioblastoma

El glioblastoma es la forma más mortal de cáncer cerebral primario, en gran medida debido a su crecimiento agresivo y su resistencia al tratamiento. El tumor se infiltra en el tejido cerebral... Más

Imaginología General

ver canal
Imagen: Los métodos automatizados permiten el análisis de exploraciones PET/CT (izquierda) para predecir con precisión la ubicación y el tamaño del tumor (derecha)(Foto cortesía de Nature Machine Intelligence, 2024. DOI: 10.1038/S42256-024-00912-9)

Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC

Las técnicas de diagnóstico por imágenes son esenciales para el diagnóstico del cáncer, ya que determinar con precisión la ubicación, el tamaño y el tipo de tumores es fundamental para seleccionar el tratamiento... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.