Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Método nuevo de IA predice el cáncer de mama con cinco años de antelación

Por el equipo editorial de MedImaging en español
Actualizado el 22 May 2019
Print article
Imagen: Se espera que un método nuevo de inteligencia artificial, para detectar el cáncer de mama, supere los métodos existentes que no cumplen con sus predicciones (Fotografía cortesía del MIT).
Imagen: Se espera que un método nuevo de inteligencia artificial, para detectar el cáncer de mama, supere los métodos existentes que no cumplen con sus predicciones (Fotografía cortesía del MIT).
Investigadores de dos instituciones importantes han desarrollado una herramienta nueva con métodos avanzados de inteligencia artificial (IA) para predecir el riesgo futuro de cáncer de mama en una mujer. Los modelos disponibles actualmente que utilizan factores como el historial familiar y la genética no son suficientes para predecir la probabilidad de que una mujer sea diagnosticada con cáncer de mama.

En algunos modelos, se agregó la densidad mamaria (la cantidad de tejido denso en comparación con la cantidad de tejido graso en la mama en una mamografía) para mejorar la evaluación del riesgo, ya que es un factor de riesgo independiente para el cáncer de mama. Dado que se basa en una evaluación subjetiva que puede variar entre los radiólogos, se ha estudiado el aprendizaje profundo, un subconjunto de la IA en el que las computadoras aprenden con el ejemplo, como una forma de estandarizar y automatizar estas mediciones.

Adam Yala, un candidato a Ph.D. en el Instituto de Tecnología de Massachusetts (MIT), en colaboración con Regina Barzilay, Ph.D., una experta en inteligencia artificial y profesora de MIT, y Constance Lehman, MD, Ph.D., jefe de imagenología de mama en el Hospital General de Massachusetts y profesora de radiología en la facultad de medicina de Harvard, compararon recientemente tres métodos diferentes de evaluación de riesgos.

El primer modelo se basó en los factores de riesgo tradicionales, el segundo en el aprendizaje profundo que usó solo la mamografía y el tercero en un enfoque híbrido que incorporó tanto la mamografía como los factores de riesgo tradicionales en el modelo de aprendizaje profundo. Los investigadores utilizaron casi 90.000 mamografías de detección de alta resolución de aproximadamente 40.000 mujeres para entrenar, validar y probar el modelo de aprendizaje profundo. Pudieron obtener resultados de cáncer a través de la vinculación con un registro regional de tumores.

Los modelos de aprendizaje profundo produjeron una discriminación de riesgo sustancialmente mejorada con respecto al modelo de Tyrer-Cuzick, un estándar clínico actual que utiliza la densidad mamaria en el riesgo de factorización. Al comparar el modelo de aprendizaje profundo híbrido con la densidad de los senos, los investigadores encontraron que las pacientes con senos no densos y con alto riesgo evaluado por el modelo tenían 3,9 veces la incidencia de cáncer de las pacientes con senos densos y bajo riesgo evaluado por el modelo. Las ventajas se mantuvieron para los diferentes subgrupos de mujeres.

“Hay mucha más información en una mamografía que solo las cuatro categorías de densidad mamaria. A través del uso del modelo de aprendizaje profundo, aprendemos señales sutiles que son indicativas de un futuro cáncer”, dijo Yala. “Hay una gran cantidad de información en una mamografía de resolución completa que los modelos de riesgo de cáncer de mama no han podido usar hasta hace poco. Con el aprendizaje profundo, podemos aprender a aprovechar esa información directamente de los datos y crear modelos que sean significativamente más exactos en diversas poblaciones”.

“A diferencia de los modelos tradicionales, nuestro modelo de aprendizaje profundo funciona igualmente bien en diversas razas, edades e historias familiares”, dijo la Dra. Barzilay. “Hasta ahora, las mujeres afroamericanas se encontraban en una clara desventaja al momento de realizarles una evaluación de riesgo exacta del futuro cáncer de mama. Nuestro modelo de IA ha cambiado eso”.

“Un elemento faltante para apoyar programas de detección más efectivos y personalizados ha sido las herramientas de evaluación de riesgos que sean fáciles de implementar y que funcionen en toda la diversidad de mujeres a las que atendemos”, dijo el Dr. Lehman. “Estamos encantados con nuestros resultados y ansiosos por trabajar en estrecha colaboración con nuestros sistemas de atención médica, nuestros proveedores y, lo más importante, nuestros pacientes para incorporar este descubrimiento en resultados mejorados para todas las mujeres”.

Enlace relacionado:
Instituto de Tecnología de Massachusetts, MIT

New
Mammo 3D Performance Kits
Mammo 3D Performance Kits
New
Diagnostic Ultrasound System
MS1700C
New
Digital Radiographic System
OMNERA 300M
Portable Color Doppler Ultrasound Scanner
DCU10

Print article

Canales

Radiografía

ver canal
Imagen:Los gráficos ilustran cómo se ven las imágenes 3D con XACT con ejemplos del logotipo de la UC a la izquierda y una muestra de hueso a la derecha (foto cortesía de la Escuela de Medicina de UCI)

Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación

La tomografía computarizada (TC) ha sido durante mucho tiempo una herramienta esencial en la obtención de imágenes modernas, ya que ofrece vistas 3D detalladas del cuerpo humano y otros materiales.... Más

Ultrasonido

ver canal
Imagen: La incorporación de la ecografía POC puede mejorar la atención obstétrica en el primer trimestre (cortesía de la foto de 123RF)

Ecografía POC mejora la atención en las primeras etapas del embarazo y reduce las visitas a urgencias

Un nuevo estudio ha descubierto que la implementación de ultrasonidos en el punto de atención (POCUS) en clínicas para evaluar la viabilidad y la edad gestacional de los embarazos... Más

Medicina Nuclear

ver canal
Imagen: La combinación de imágenes avanzadas permitió a los investigadores determinar las regiones metabólicamente más activas o agresivas del glioblastoma (Foto cortesía de Mayo Clinic)

Una combinación de tecnologías de imágenes avanzadas ofrece un avance en el tratamiento del glioblastoma

El glioblastoma es la forma más mortal de cáncer cerebral primario, en gran medida debido a su crecimiento agresivo y su resistencia al tratamiento. El tumor se infiltra en el tejido cerebral... Más

Imaginología General

ver canal
Imagen: Los métodos automatizados permiten el análisis de exploraciones PET/CT (izquierda) para predecir con precisión la ubicación y el tamaño del tumor (derecha)(Foto cortesía de Nature Machine Intelligence, 2024. DOI: 10.1038/S42256-024-00912-9)

Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC

Las técnicas de diagnóstico por imágenes son esenciales para el diagnóstico del cáncer, ya que determinar con precisión la ubicación, el tamaño y el tipo de tumores es fundamental para seleccionar el tratamiento... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.