Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Método con IA disminuye la exposición a la radiación debido a los exámenes de TC

Por el equipo editorial de MedImaging en español
Actualizado el 17 Jul 2019
Print article
Imagen: La investigación muestra que el aprendizaje automático tiene el potencial de perfeccionar la imagenología médica, especialmente la tomografía computarizada, reduciendo la exposición a la radiación y mejorando la calidad de la imagen (Fotografía cortesía de Axis Imaging News).
Imagen: La investigación muestra que el aprendizaje automático tiene el potencial de perfeccionar la imagenología médica, especialmente la tomografía computarizada, reduciendo la exposición a la radiación y mejorando la calidad de la imagen (Fotografía cortesía de Axis Imaging News).
Los ingenieros del Instituto Politécnico de Rensselaer (Troy, NY, EUA) trabajaron junto con los radiólogos del Hospital General de Massachusetts (Boston, MA, EUA) y la facultad de medicina de Harvard (Boston, MA, EUA), para demostrar que el aprendizaje automático tiene el potencial de perfeccionar enormemente la imagenología médica, en particular la tomografía computarizada (TC), reduciendo la exposición a la radiación y mejorando la calidad de las imágenes. El equipo cree que los nuevos hallazgos de su investigación son un caso sólido para aprovechar el poder de la inteligencia artificial (IA) para mejorar las tomografías computarizadas de baja dosis.

En los últimos años, ha habido un enfoque importante en las técnicas de tomografía computarizada de baja dosis para aliviar las preocupaciones sobre la exposición de los pacientes a la radiación de rayos X asociada al uso generalizado de las tomografías computarizadas. Sin embargo, reducir la radiación puede afectar la calidad de la imagen. Ingenieros de todo el mundo han intentado resolver este problema diseñando técnicas de reconstrucción iterativas para ayudar a detectar y eliminar las interferencias de las imágenes de TC. Sin embargo, el inconveniente es que estos algoritmos a veces eliminan información útil o alteran falsamente la imagen.

En la última investigación, el equipo intentó abordar este desafío persistente utilizando un marco de aprendizaje automático. Desarrollaron una red neuronal profunda dedicada y compararon sus mejores resultados con lo mejor de lo que tres de los principales escáneres de TC comerciales podrían producir con técnicas de reconstrucción iterativas. Los investigadores buscaban determinar cómo se utilizaba clínicamente el desempeño de su enfoque de aprendizaje profundo en comparación con los algoritmos iterativos representativos seleccionados. Descubrieron que los algoritmos de aprendizaje profundo desarrollados por el equipo de Rensselaer funcionaron tan bien como, o mejor que, las técnicas iterativas actuales en la mayoría de los casos.

Los investigadores también encontraron que su método de aprendizaje profundo era mucho más rápido y permitía a los radiólogos afinar las imágenes según los requisitos clínicos. Según los investigadores, los resultados positivos se obtuvieron sin acceso a los datos originales o sin procesar de todos los escáneres de tomografía computarizada, y es probable que un algoritmo de aprendizaje profundo más especializado se desempeñe aún mejor si se dispone de datos de tomografía computarizada originales. Creen que estos resultados confirman que el aprendizaje profundo podría ayudar a producir imágenes de TC más seguras y exactas, a la vez que se ejecuta más rápidamente que los algoritmos iterativos.

“La dosis de radiación ha sido un problema importante para los pacientes a quienes les realizan tomografías computarizadas. Nuestra técnica de aprendizaje automático es superior o, al menos, comparable a las técnicas iterativas utilizadas en este estudio para permitir la tomografía computarizada de baja radiación”, dijo Ge Wang, profesor de la cátedra Clark y Crossan de ingeniería biomédica en Rensselaer y un autor correspondiente en este artículo. “Es una conclusión de alto nivel que lleva un mensaje poderoso. Es hora de que el aprendizaje automático despegue rápidamente y, con suerte, se haga cargo”.

Enlace relacionado:
Instituto Politécnico de Rensselaer
Hospital General de Massachusetts
Facultad de Medicina de Harvard



Multi-Use Ultrasound Table
Clinton
Radiation Therapy Treatment Software Application
Elekta ONE
NMUS & MSK Ultrasound
InVisus Pro
Portable Color Doppler Ultrasound Scanner
DCU10

Print article

Canales

Radiografía

ver canal
Imagen:Los gráficos ilustran cómo se ven las imágenes 3D con XACT con ejemplos del logotipo de la UC a la izquierda y una muestra de hueso a la derecha (foto cortesía de la Escuela de Medicina de UCI)

Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación

La tomografía computarizada (TC) ha sido durante mucho tiempo una herramienta esencial en la obtención de imágenes modernas, ya que ofrece vistas 3D detalladas del cuerpo humano y otros materiales.... Más

Ultrasonido

ver canal
Imagen: La incorporación de la ecografía POC puede mejorar la atención obstétrica en el primer trimestre (cortesía de la foto de 123RF)

Ecografía POC mejora la atención en las primeras etapas del embarazo y reduce las visitas a urgencias

Un nuevo estudio ha descubierto que la implementación de ultrasonidos en el punto de atención (POCUS) en clínicas para evaluar la viabilidad y la edad gestacional de los embarazos... Más

Medicina Nuclear

ver canal
Imagen: La combinación de imágenes avanzadas permitió a los investigadores determinar las regiones metabólicamente más activas o agresivas del glioblastoma (Foto cortesía de Mayo Clinic)

Una combinación de tecnologías de imágenes avanzadas ofrece un avance en el tratamiento del glioblastoma

El glioblastoma es la forma más mortal de cáncer cerebral primario, en gran medida debido a su crecimiento agresivo y su resistencia al tratamiento. El tumor se infiltra en el tejido cerebral... Más

Imaginología General

ver canal
Imagen: Los métodos automatizados permiten el análisis de exploraciones PET/CT (izquierda) para predecir con precisión la ubicación y el tamaño del tumor (derecha)(Foto cortesía de Nature Machine Intelligence, 2024. DOI: 10.1038/S42256-024-00912-9)

Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC

Las técnicas de diagnóstico por imágenes son esenciales para el diagnóstico del cáncer, ya que determinar con precisión la ubicación, el tamaño y el tipo de tumores es fundamental para seleccionar el tratamiento... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.