Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




La IA puede distinguir los tumores cerebrales del tejido sano

Por el equipo editorial de MedImaging en español
Actualizado el 29 Nov 2024
Print article
Imagen: Los modelos de inteligencia artificial pueden entrenarse para distinguir los tumores cerebrales del tejido sano (foto cortesía de 123RF)
Imagen: Los modelos de inteligencia artificial pueden entrenarse para distinguir los tumores cerebrales del tejido sano (foto cortesía de 123RF)

Los investigadores han logrado avances significativos en inteligencia artificial (IA) para aplicaciones médicas. La IA es especialmente prometedora en radiología, donde los retrasos en el procesamiento de imágenes médicas a menudo pueden posponer la atención al paciente. Las redes neuronales convolucionales (CNN) son herramientas robustas que se utilizan para entrenar modelos de IA en grandes conjuntos de datos de imágenes para identificar y clasificar imágenes. Esto permite que las redes "aprendan" a distinguir entre diferentes tipos de imágenes. Además, las CNN también tienen la capacidad de "aprendizaje por transferencia,", lo que permite que los modelos entrenados para una tarea se apliquen a nuevas tareas similares. Los modelos de IA ya han demostrado la capacidad de identificar tumores cerebrales en imágenes de resonancia magnética con una precisión casi humana. Ahora, en un nuevo estudio, los investigadores han demostrado que los modelos de IA se pueden entrenar para diferenciar entre tumores cerebrales y tejido sano.

Aunque la detección de animales camuflados y la clasificación de tumores cerebrales puedan parecer tareas no relacionadas, los investigadores de la Universidad de Boston (Boston, MA, EUA.) vieron una conexión entre el camuflaje natural de los animales y la forma en que las células cancerosas se mezclan con el tejido sano circundante. La capacidad de generalizar (el proceso de categorizar varios elementos bajo una identidad común) es crucial para que el modelo de IA detecte objetos camuflados. Esta capacidad podría ser particularmente ventajosa para detectar tumores. En su estudio retrospectivo utilizando datos de resonancia magnética disponibles públicamente, los investigadores exploraron cómo se podrían entrenar las redes neuronales utilizando datos de imágenes de cáncer cerebral, incorporando un paso único de detección de camuflaje para mejorar las capacidades de detección de tumores de las redes.

Los investigadores utilizaron imágenes de resonancia magnética de repositorios públicos que contenían tanto escaneos de cerebros cancerosos como sanos para entrenar las redes neuronales en la identificación de áreas cancerosas, su diferenciación del tejido sano y la clasificación del tipo de cáncer. Los resultados, publicados en Biology Methods and Protocols, mostraron que las redes funcionaron casi impecablemente en la detección de imágenes cerebrales sanas, con solo 1 o 2 falsos negativos, y también pudieron diferenciar entre cerebros cancerosos y no cancerosos. Una de las redes logró una precisión del 85,99 % en la detección de cáncer cerebral, mientras que la otra alcanzó el 83,85 %. Una característica importante de estas redes es su capacidad para explicar sus decisiones, lo que puede aumentar la confianza que tanto los profesionales médicos como los pacientes depositan en los modelos de IA. Esta transparencia es particularmente valiosa, ya que los modelos de aprendizaje profundo a menudo son criticados por su falta de interpretabilidad. La red fue capaz de generar imágenes que resaltaron áreas específicas en su clasificación de imágenes tumorales positivas o negativas, lo que permitiría a los radiólogos verificar los hallazgos de la IA, sirviendo casi como una segunda opinión en radiología.

De cara al futuro, los investigadores creen que el desarrollo de modelos de redes profundas cuyas decisiones sean fáciles de explicar será crucial para que la IA desempeñe un papel transparente y de apoyo en entornos clínicos. Si bien las redes tuvieron un rendimiento menos eficaz al distinguir entre diferentes tipos de cáncer cerebral, el estudio demostró que exhibían representaciones internas distintas. La precisión y la claridad de las redes mejoraron a medida que se las entrenó utilizando la detección de camuflaje. El aprendizaje por transferencia aumentó la precisión de las redes y, si bien el modelo con mejor rendimiento fue aproximadamente un 6 % menos preciso que la detección humana estándar, la investigación destaca con éxito las mejoras en la precisión logradas con este enfoque de entrenamiento. Los investigadores sostienen que, cuando se combina con métodos para explicar las decisiones de la red, este enfoque fomentará la transparencia necesaria para futuras aplicaciones de IA en entornos clínicos.

“Los avances en IA permiten una detección y un reconocimiento de patrones más precisos”, afirmó el autor principal del artículo, Arash Yazdanbakhsh. “Esto, en consecuencia, permite una mejor ayuda en el diagnóstico y cribado basados en imágenes, pero también requiere más explicaciones sobre cómo la IA realiza estas tareas. El objetivo de lograr que la IA sea explicable mejora la comunicación entre los humanos y la IA en general. Esto es particularmente importante entre los profesionales médicos y la IA diseñada para fines médicos. Los modelos claros y explicables están mejor posicionados para ayudar en el diagnóstico, rastrear la progresión de la enfermedad y monitorear el tratamiento”.

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Diagnostic Ultrasound System
MS1700C
New
Ultrasound Scanner
TBP-5533
Radiation Therapy Treatment Software Application
Elekta ONE

Print article
Radcal

Canales

Radiografía

ver canal
Imagen: El nuevo detector de rayos X produce una radiografía de alta calidad (foto cortesía de ACS Central Science 2024, https://doi.org/10.1021/acscentsci.4c01296)

Detector altamente sensible y plegable hace que la radiografía sea más segura

Los rayos X se utilizan ampliamente en pruebas de diagnóstico y monitoreo industrial, desde controles dentales hasta escaneos de equipaje en aeropuertos. Sin embargo, estos rayos de alta energía... Más

Ultrasonido

ver canal
Imagen: El nuevo programa de software utiliza IA para leer ecocardiogramas (foto cortesía de Adobe Stock)

Tecnología de reconocimiento de imágenes con IA permite lectura más rápida del ecocardiograma

Un ecocardiograma es una herramienta de diagnóstico por imágenes que proporciona información valiosa sobre la estructura y el funcionamiento del corazón, ayudando a los médicos... Más

Medicina Nuclear

ver canal
Imagen: Ejemplo de análisis de IA de imágenes PET/TC (foto cortesía de Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

Análisis de IA de imágenes PET/TC predice efectos secundarios de la inmunoterapia en cáncer de pulmón

La inmunoterapia ha avanzado significativamente en el tratamiento del cáncer de pulmón primario, pero a veces puede provocar un efecto secundario grave conocido como enfermedad pulmonar intersticial.... Más

Imaginología General

ver canal
Imagen: Cleerly ofrece una solución CCTA habilitada para AI para una evaluación personalizada, precisa y medible de placa, estenosis e isquemia (foto cortesía de Cleerly)

Evaluaciones de placas habilitadas por IA ayudan a cardiólogos a identificar a pacientes con EAC de alto riesgo

Una investigación pionera ha demostrado que un análisis no invasivo basado en inteligencia artificial (IA) de la tomografía computarizada (TC) cardíaca puede predecir eventos cardíacos graves en pacientes... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.