Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA mejora el diagnóstico de fracturas de cadera mediante rayos X

Por el equipo editorial de MedImaging en español
Actualizado el 10 Aug 2020
Print article
El uso de algoritmos de inteligencia artificial (IA) para analizar imágenes de rayos X mejora la identificación de las fracturas de cadera por parte del radiólogo, según un estudio nuevo.

Desarrollada por investigadores de la Universidad de Teikyo (Tokio, Japón), la Universidad de Salud Ocupacional y Ambiental (Fukuoka, Japón) y otras instituciones, la red neuronal convolucional profunda (CNN) para detectar fracturas de cadera a partir de rayos X, utilizó la tomografía computarizada (TC) y la resonancia magnética (MRI) como estándar de oro para la comparación. El estudio involucró a 327 pacientes a quienes les realizaron una TC o RM pélvica y fueron diagnosticadas con fracturas femorales proximales; el algoritmo de IA se entrenó con 302 de estos exámenes.

Los 25 casos restantes y otros 25 pacientes control se utilizaron luego para probar el DCNN, y siete lectores participaron en este estudio; una escala de calificación continua registró el nivel de confianza de cada observador. Posteriormente, cada observador interpretó las radiografías con las salidas de la CNN y las calificó nuevamente. A continuación, se utilizó el área bajo la curva (AUC) para comparar la detección de fracturas. Los resultados mostraron que el AUC promedio de los lectores fue de 0,832; el AUC de la DCNN solo fue 0,905; y el AUC promedio de los lectores con salidas de CNN fue 0,876. El estudio fue publicado el 23 de julio de 2020 en la revista European Journal of Radiology.

“Los resultados del estudio muestran que la IA ofrece una serie de beneficios para este escenario clínico en particular. Las CNN profundas puede tener el potencial de identificar características abstractas adicionales que no han sido evidentes para el lector humano”, concluyeron el autor principal, Tsubasa Mawatari, PhD, y sus colegas. “La combinación podría mitigar la tarea, a veces desafiante, de detectar fracturas de cadera en los rayos X, aumentar la eficiencia del diagnóstico y ampliar el acceso a la interpretación de imágenes médicas de 'nivel experto'“.

El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático de IA basados en representaciones de datos de aprendizaje, a diferencia de los algoritmos específicos de tareas. Se trata de algoritmos de redes neurales convolucionales que utilizan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción, conversión y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.

Enlace relacionado:
Universidad de Teikyo
Universidad de Salud Ocupacional y Ambiental

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
Fixed X-Ray System (RAD)
Allengers 325 - 525
New
X-ray Diagnostic System
FDX Visionary-A
New
Miembro Oro
X-Ray QA Meter
T3 RG Pro

Print article

Canales

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

Imaginología General

ver canal
Imagen: La investigación abre el camino para un dispositivo de imágenes seguro y lo suficientemente pequeño como para colocarlo en una ambulancia (foto cortesía de la Universidad de Aberdeen)

Nuevo escáner identifica daños cerebrales en pacientes con ictus en campos magnéticos más bajos

Los investigadores han desarrollado un nuevo tipo de escáner médico que puede identificar daños cerebrales en pacientes con accidente cerebrovascular (ACV) utilizando campos magnéticos... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.