Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Herramienta de diagnóstico de IA funciona a la par que radiólogos en detección de enfermedades en radiografías de tórax

Por el equipo editorial de MedImaging en español
Actualizado el 21 Sep 2022
Print article
Imagen: Nueva herramienta supera el obstáculo principal en el diseño clínico de IA (Fotografía cortesía de Unsplash)
Imagen: Nueva herramienta supera el obstáculo principal en el diseño clínico de IA (Fotografía cortesía de Unsplash)

La mayoría de los modelos de inteligencia artificial (IA) requieren el etiquetado de conjuntos de datos durante su "entrenamiento" para que puedan aprender a identificar correctamente las patologías. Este proceso es especialmente engorroso para las tareas de interpretación de imágenes médicas, ya que implica la anotación a gran escala por parte de médicos humanos, lo que a menudo es costoso y requiere mucho tiempo. Por ejemplo, para etiquetar un conjunto de datos de rayos X de tórax, los radiólogos expertos tendrían que mirar cientos de miles de imágenes de rayos X una por una y anotar explícitamente cada una con las condiciones detectadas. Si bien los modelos de IA más recientes han tratado de abordar este cuello de botella de etiquetado aprendiendo de datos no etiquetados en una etapa de "entrenamiento previo", eventualmente requieren un ajuste fino en los datos etiquetados para lograr un alto rendimiento. Ahora, los científicos han desarrollado una herramienta de diagnóstico de IA que puede detectar enfermedades en radiografías de tórax, directamente a partir de descripciones del lenguaje natural contenidas en los informes clínicos que las acompañan.

El nuevo modelo llamado CheXzero que fue desarrollado por científicos de la Facultad de Medicina de Harvard (Boston, MA, EUA) y colegas de la Universidad de Stanford (Stanford, CA, EUA) es autosupervisado, en el sentido de que aprende de manera más independiente, sin necesidad de datos etiquetados a mano antes o después del entrenamiento. El paso se considera un avance importante en el diseño de IA clínica porque la mayoría de los modelos de IA actuales requieren una laboriosa anotación humana de grandes cantidades de datos antes de que los datos etiquetados alimenten el modelo para entrenarlo. El modelo se basa únicamente en radiografías de tórax y las notas en inglés que se encuentran en los informes de rayos X adjuntos. El modelo fue “entrenado” en un conjunto de datos disponible públicamente que contiene más de 377.000 radiografías de tórax y más de 227.000 notas clínicas correspondientes.

Luego, se probó su desempeño en dos conjuntos de datos separados de radiografías de tórax y las notas correspondientes recopiladas de dos instituciones diferentes, una de las cuales estaba en un país diferente. Esta diversidad de conjuntos de datos tenía como objetivo garantizar que el modelo funcionara igual de bien cuando se expusiera a notas clínicas que pueden usar una terminología diferente para describir el mismo hallazgo. Tras las pruebas, los investigadores identificaron con éxito patologías que no fueron anotadas explícitamente por médicos humanos. Superó a otras herramientas de IA autosupervisadas y funcionó con una precisión similar a la de los radiólogos humanos. El enfoque, dijeron los investigadores, eventualmente podría aplicarse a modalidades de imágenes mucho más allá de los rayos X, incluidas las tomografías computarizadas, las resonancias magnéticas y los ecocardiogramas.

“Estamos viviendo los primeros días de los modelos médicos de inteligencia artificial de próxima generación que pueden realizar tareas flexibles aprendiendo directamente del texto”, dijo el investigador principal del estudio, Pranav Rajpurkar, profesor asistente de informática biomédica en el Instituto Blavatnik en HMS. “Hasta ahora, la mayoría de los modelos de IA se han basado en la anotación manual de grandes cantidades de datos, alrededor de 100.000 imágenes, para lograr un alto rendimiento. Nuestro método no necesita tales anotaciones específicas de la enfermedad”.

“Con CheXzero, uno puede simplemente alimentar al modelo con una radiografía de tórax y el informe de radiología correspondiente, y aprenderá que la imagen y el texto en el informe deben considerarse similares; en otras palabras, aprenderá a coincidir la radiografía de tórax con su informe adjunto”, agregó Rajpurkar. “El modelo puede eventualmente aprender cómo los conceptos en el texto no estructurado se corresponden con los patrones visuales en la imagen”.

Enlaces relacionados:
Facultad de Medicina de Harvard  
Universidad de Stanford

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Miembro Oro
X-Ray QA Meter
T3 RG Pro
New
Mobile Barrier
Tilted Mobile Leaded Barrier
New
Ultrasound Table
General 3-Section Top EA Ultrasound Table

Print article

Canales

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

Imaginología General

ver canal
Imagen: La investigación abre el camino para un dispositivo de imágenes seguro y lo suficientemente pequeño como para colocarlo en una ambulancia (foto cortesía de la Universidad de Aberdeen)

Nuevo escáner identifica daños cerebrales en pacientes con ictus en campos magnéticos más bajos

Los investigadores han desarrollado un nuevo tipo de escáner médico que puede identificar daños cerebrales en pacientes con accidente cerebrovascular (ACV) utilizando campos magnéticos... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.