Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Herramienta de IA detecta con precisión radiografías de tórax normales y anormales

Por el equipo editorial de MedImaging en español
Actualizado el 10 Mar 2023
Print article
Imagen: Una herramienta de IA puede identificar con precisión las radiografías de tórax normales y anormales en un entorno clínico (Fotografía cortesía de Pexels)
Imagen: Una herramienta de IA puede identificar con precisión las radiografías de tórax normales y anormales en un entorno clínico (Fotografía cortesía de Pexels)

Las radiografías de tórax son una herramienta de diagnóstico esencial para identificar diversas afecciones relacionadas con el corazón y los pulmones, incluido el cáncer y las enfermedades pulmonares crónicas. Sin embargo, la interpretación de las radiografías de tórax es una tarea pesada y que requiere mucho tiempo para los radiólogos de todo el mundo. Ahora, un nuevo estudio ha encontrado que una herramienta de inteligencia artificial (IA) puede identificar con precisión las radiografías de tórax normales y anormales en un entorno clínico. La herramienta de IA podría reducir en gran medida la carga de trabajo de los radiólogos y mejorar la eficiencia del diagnóstico y tratamiento de los pacientes.

En el estudio multicéntrico retrospectivo, los investigadores del Hospital Herlev and Gentofte (Copenhague, Dinamarca) evaluaron la confiabilidad del uso de una herramienta de IA que era capaz de identificar radiografías de tórax normales y anormales. Usando una herramienta de inteligencia artificial disponible comercialmente, los investigadores analizaron las radiografías de tórax de 1.529 pacientes de cuatro hospitales en Dinamarca. El estudio incluyó radiografías de tórax de pacientes del departamento de emergencias, pacientes hospitalizados y pacientes ambulatorios. La herramienta de IA clasificó las radiografías como "normales de alta confianza" o "normales sin alta confianza" como normales y anormales, respectivamente. El estudio empleó a dos radiólogos torácicos (tórax) certificados por la junta como estándar de referencia, y utilizó un tercer radiólogo en casos de desacuerdo, y los tres médicos permanecieron cegados a los resultados de la IA.

De las 429 radiografías de tórax clasificadas como normales, la herramienta de IA también clasificó 120, o el 28 %, como normales. Esto sugiere que la herramienta de IA podría automatizar de forma segura esas radiografías, o el 7,8 % de todos los rayos X. La herramienta de IA también identificó radiografías de tórax anormales con una sensibilidad del 99,1 %. Los investigadores esperan realizar más estudios hacia una implementación prospectiva más amplia de la herramienta de IA en la que los radiólogos aún revisen las radiografías de tórax informadas de forma autónoma. La herramienta de IA se desempeñó particularmente bien en la identificación de las radiografías normales del grupo de pacientes ambulatorios con una tasa del 11,6 %, lo que indica que puede funcionar especialmente bien en entornos ambulatorios con una alta prevalencia de radiografías de tórax normales.

“El hallazgo más sorprendente fue cuán sensible era esta herramienta de IA para todo tipo de enfermedad del pecho”, dijo el coautor del estudio Louis Lind Plesner, MD, del departamento de radiología del Hospital Herlev and Gentofte. “De hecho, no pudimos encontrar una sola radiografía de tórax en nuestra base de datos en la que el algoritmo cometiera un error importante. Además, la herramienta de IA tuvo una sensibilidad general mejor que la de los radiólogos clínicos certificados por la junta”.

Enlaces relacionados:
Hospital Herlev y Gentofte

Ultrasound Table
Women’s Ultrasound EA Table
Ultrasonic Pocket Doppler
SD1
Ultrasound Imaging System
P12 Elite
NMUS & MSK Ultrasound
InVisus Pro

Print article

Canales

RM

ver canal
Imagen: Comparación que muestra exploraciones 3T y 7T para el mismo participante (foto cortesía de P Simon Jones/University of Cambridge)

Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento

Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más

Ultrasonido

ver canal
Imagen: el nuevo tipo de célula T Sonogenetic EchoBack-CAR (Foto cortesía de Longwei Liu/USC)

Células inmunitarias activadas por ultrasonido destruyen células cancerosas

La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.