Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo de IA tan bueno como lectores humanos en mamografías de detección

Por el equipo editorial de MedImaging en español
Actualizado el 08 Sep 2023
Print article
Imagen: La IA se desempeña de foema comparable con lectores humanos de mamografías (Fotografía cortesía de 123RF)
Imagen: La IA se desempeña de foema comparable con lectores humanos de mamografías (Fotografía cortesía de 123RF)

Las mamografías de detección, si bien son valiosas, pueden no detectar todos los casos de cáncer de mama. Los resultados falsos positivos pueden dar lugar a imágenes y biopsias innecesarias en mujeres sin cáncer. Un enfoque para mejorar la sensibilidad y especificidad de la mamografía de detección es hacer que dos lectores interpreten cada mamografía. Se ha demostrado que la doble lectura aumenta las tasas de detección de cáncer entre un 6 y un 15 % manteniendo bajas las tasas de recuperación. Sin embargo, implementar esta estrategia puede resultar desafiante durante períodos de escasez de lectores debido a su naturaleza intensiva en mano de obra. Ahora, un estudio comparativo del rendimiento de un algoritmo de inteligencia artificial (IA) con lectores humanos de mamografías de detección sugiere que la IA puede proporcionar una sensibilidad y especificidad comparables a los lectores humanos, lo que podría servir como un segundo lector valioso en la práctica clínica.

Investigadores de la Universidad de Nottingham (Nottingham, Reino Unido) utilizaron una evaluación estandarizada para determinar el rendimiento de un algoritmo de IA disponible comercialmente en comparación con lectores humanos al interpretar mamografías de detección. La evaluación utilizó conjuntos de pruebas de la evaluación de control de calidad del Rendimiento Personal en Detección Mamográfica (PERFORMS por sus siglar en inglés), un programa empleado por el Programa de Detección Mamaria del Servicio Nacional de Salud del Reino Unido (NHSBSP). Los conjuntos de pruebas PERFORMS constan de 60 exámenes mamográficos desafiantes, incluidos casos con hallazgos anormales, benignos y normales. La evaluación de cada lector de una mamografía de prueba se comparó con los resultados reales de la IA. El estudio empleó datos de dos conjuntos de pruebas PERFORMS consecutivos, con un total de 120 mamografías de detección, para la evaluación tanto de lectores humanos como del algoritmo de IA.

El equipo de investigación comparó el desempeño del algoritmo de IA con el de 552 lectores humanos, incluidos 315 (57 %) radiólogos certificados y 237 lectores no radiólogos, incluidos 206 radiógrafos y 31 médicos especialistas en mama. Cada mama en el estudio se consideró individualmente, con el 67 % categorizada como normal (161/240), el 29 % como maligna (70/240) y el 4 % como benigna (9/240). La característica mamográfica maligna más común observada fueron masas (64,3 %), seguidas de calcificaciones (12,9 %), asimetrías (11,4 %) y distorsiones arquitectónicas (11,4 %). El tamaño medio de las lesiones malignas midió 15,5 mm. El estudio encontró que no hubo diferencias significativas en el desempeño de la IA y los lectores humanos en la detección del cáncer de mama en los 120 exámenes. Los lectores humanos demostraron una sensibilidad media del 90 % y una especificidad del 76 %, mientras que la IA mostró una sensibilidad (91 %) y especificidad (77 %) comparables en comparación con los lectores humanos.

"Los resultados de este estudio proporcionan pruebas sólidas que respaldan que la IA para la detección del cáncer de mama puede funcionar tan bien como los lectores humanos", afirmó Yan Chen, Ph.D., profesora de detección digital en la Universidad de Nottingham. "Es vital que los centros de imágenes cuenten con un proceso para proporcionar un seguimiento continuo de la IA una vez que se convierta en parte de la práctica clínica. Hasta la fecha, no hay otros estudios que hayan comparado el desempeño de un número tan grande de lectores humanos en conjuntos de pruebas de control de calidad de rutina con la IA, por lo que este estudio puede proporcionar un modelo para evaluar el desempeñol de la IA en un entorno del mundo real".

Enlaces relacionados:
Universidad de Nottingham  

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition
New
Ultrasound Scanner
TBP-5533
New
Transducer Covers
Surgi Intraoperative Covers

Print article

Canales

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

Imaginología General

ver canal
Imagen: La investigación abre el camino para un dispositivo de imágenes seguro y lo suficientemente pequeño como para colocarlo en una ambulancia (foto cortesía de la Universidad de Aberdeen)

Nuevo escáner identifica daños cerebrales en pacientes con ictus en campos magnéticos más bajos

Los investigadores han desarrollado un nuevo tipo de escáner médico que puede identificar daños cerebrales en pacientes con accidente cerebrovascular (ACV) utilizando campos magnéticos... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.