Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Radiólogos superan a IA en detección de enfermedades pulmonares comunes en radiografías de tórax

Por el equipo editorial de MedImaging en español
Actualizado el 05 Oct 2023
Print article
Imagen: Los radiólogos superaron a la IA en la identificación de enfermedades pulmonares en radiografías de tórax (Fotografía cortesía de RSNA)
Imagen: Los radiólogos superaron a la IA en la identificación de enfermedades pulmonares en radiografías de tórax (Fotografía cortesía de RSNA)

Las radiografías de tórax son utilizadas frecuentemente para el diagnóstico, pero se necesita mucha capacitación y experiencia para leer estas imágenes correctamente. Aunque la Administración de Alimentos y Medicamentos (FDA) ha aprobado algunas herramientas de inteligencia artificial (IA) para ayudar a los radiólogos, la eficacia en el mundo real de estas soluciones de IA en radiología aún está relativamente inexplorada. Investigaciones anteriores a menudo se han enfocado en la capacidad de la IA para detectar una sola enfermedad, lo cual es más simple que situaciones del mundo real en las que un paciente puede tener múltiples afecciones. Ahora, un nuevo estudio de más de 2.000 radiografías de tórax ha demostrado que los radiólogos humanos fueron generalmente más precisos que la IA a la hora de identificar la presencia y ausencia de tres enfermedades pulmonares comunes.

Un equipo de investigadores del Hospital Herlev y Gentofte (Copenhague, Dinamarca) comparó el desempeño de cuatro herramientas de IA disponibles comercialmente con el de 72 radiólogos. Evaluaron 2.040 radiografías de tórax de adultos de cuatro hospitales diferentes, recopiladas durante dos años en 2020. La edad promedio de los pacientes fue de 72 años y aproximadamente un tercio de las radiografías tenían al menos un hallazgo clave. Los investigadores se centraron en tres afecciones comunes: neumopatía alveolar (que podría deberse a neumonía o edema pulmonar), neumotórax (colapso pulmonar) y derrame pleural (líquido alrededor de los pulmones).

Las herramientas de IA mostraron tasas de sensibilidad que variaron: 72-91 % para detectar neumopatías alveolares, 63-90 % para neumotórax y 62-95 % para derrame pleural. En lo que respecta a las neuropatías alveolares, los valores predictivos positivos de la IA oscilaron entre el 40 y el 50 %. En este conjunto particular de pacientes mayores y complejos, la IA señaló incorrectamente la presencia de enfermedades alveolares en el 50-60 % de los casos. Si bien estas herramientas de IA tenían una sensibilidad de moderada a alta comparable a la de los radiólogos humanos para detectar estas afecciones, fue más probable la producción de resultados falsos positivos.

Además, su rendimiento disminuyó cuando las radiografías mostraron múltiples hallazgos o áreas objetivo más pequeñas. Por ejemplo, la probabilidad de un diagnóstico correcto de neumotórax utilizando IA osciló entre el 56 % y el 86 %, mientras que para los radiólogos fue del 96 %. Según el equipo de investigación, el objetivo final de los radiólogos es lograr un equilibrio entre identificar enfermedades y evitar falsos positivos. Estas herramientas de IA, aunque no son perfectas, podrían actuar como un control secundario para los radiólogos, aumentando potencialmente su confianza a la hora de realizar diagnósticos.

“Los sistemas de IA parecen muy buenos para encontrar enfermedades, pero no son tan buenos como los radiólogos para identificar la ausencia de enfermedades, especialmente cuando las radiografías de tórax son complejas. Demasiados diagnósticos falsos positivos darían como resultado imágenes innecesarias, exposición a la radiación y mayores costos”, dijo el investigador principal Louis L. Plesner. “Nuestro estudio demuestra que los radiólogos generalmente superan a la IA en escenarios de la vida real donde hay una amplia variedad de pacientes. Si bien un sistema de IA es eficaz para identificar radiografías de tórax normales, la IA no debería ser autónoma para realizar diagnósticos”.

Enlaces relacionados:
Hospital Herlev y Gentofte  

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
3T MRI Scanner
MAGNETOM Cima.X
New
Portable Color Doppler Ultrasound System
S5000
New
Digital Radiographic System
OMNERA 300M

Print article

Canales

RM

ver canal
Imagen: Microscopía de resonancia magnética del páncreas de ratón y humano con histología respectiva que demuestra la capacidad de los mapas ITD para identificar lesiones premalignas (foto cortesía de Bilreiro C, et al. Investigative Radiology, 2024)

Técnica pionera de resonancia magnética detecta por primera vez lesiones pancreáticas premaligna

El cáncer de páncreas es una de las principales causas de fallecimientos relacionados con el cáncer. Cuando la enfermedad está localizada, la tasa de supervivencia a cinco años... Más

Ultrasonido

ver canal
Imagen: Una sonda de fusión fotoacústica-ultrasonido basada en un transductor de ultrasonido transparente, junto con imágenes del recto de una rata y del esófago de un cerdo (foto cortesía de POSTECH)

Transductor de ultrasonido transparente para endoscopia fotoacústica y ultrasónica mejora la precisión diagnóstica

La ecografía endoscópica es una herramienta de uso común en gastroenterología para el diagnóstico del cáncer; sin embargo, ofrece un contraste limitado en tejidos... Más

Medicina Nuclear

ver canal
Imagen: El compuesto químico ilumina los cánceres resistentes al tratamiento en las exploraciones por imágenes (foto cortesía del King’s College London)

Nuevos escáneres detectan tumores agresivos para un mejor tratamiento

El cáncer de pulmón de células no pequeñas (CPCNP) es el tipo de cáncer de pulmón más frecuente. Aunque los tratamientos estándar como la cirugía,... Más

Imaginología General

ver canal
Imagen: La investigación abre el camino para un dispositivo de imágenes seguro y lo suficientemente pequeño como para colocarlo en una ambulancia (foto cortesía de la Universidad de Aberdeen)

Nuevo escáner identifica daños cerebrales en pacientes con ictus en campos magnéticos más bajos

Los investigadores han desarrollado un nuevo tipo de escáner médico que puede identificar daños cerebrales en pacientes con accidente cerebrovascular (ACV) utilizando campos magnéticos... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.