Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA supera a lectores humanos en detección de nódulos pulmonares en rayos X

Por el equipo editorial de MedImaging en español
Actualizado el 20 Feb 2024
Print article
Imagen: Un nuevo estudio probó una variedad de algoritmos de IA cara a cara en condiciones similares (Fotografía cortesía de 123RF)
Imagen: Un nuevo estudio probó una variedad de algoritmos de IA cara a cara en condiciones similares (Fotografía cortesía de 123RF)

Actualmente, más de 150 productos de software basados en inteligencia artificial (IA) están disponibles en el mercado europeo para radiología, y muchos de ellos abordan casos de uso similares. Esto dificulta que los departamentos de radiología determinen qué software es el más adecuado para sus necesidades. Si bien el desempeño del software es un factor crucial en el proceso de adquisición, los datos públicos son escasos sobre el desempeño de estos productos. Los centros clínicos a menudo carecen de los recursos y el personal para evaluar y comparar exhaustivamente varios productos antes de realizar una compra. Para abordar este problema, se lanzó una iniciativa llamada Project AIR que tiene como objetivo mejorar la transparencia del mercado para la IA en radiología. Los investigadores de Project AIR han compilado una base de datos verificada de imágenes médicas para diversos usos clínicos. Esta base de datos permite realizar pruebas comparativas de múltiples algoritmos de IA.

Ahora, en las primeras pruebas del concepto de Project AIR, los investigadores descubrieron que de siete algoritmos de IA probados para detectar nódulos pulmonares en rayos X, cuatro superaron a los lectores humanos en rendimiento, mientras que dos algoritmos para la predicción de la edad ósea no cumplieron con las expectativas. Para probar el concepto de Project AIR, un equipo que incluyó investigadores de la Universidad de Radboud (Nijmegen, Países Bajos) invitó a participar a desarrolladores de IA. Entre junio de 2022 y enero de 2023, se validaron nueve productos de ocho proveedores: dos para la predicción de la edad ósea y siete para la evaluación de nódulos pulmonares (un proveedor participó en las dos categorías). El equipo observó que los dos algoritmos para el análisis de la edad ósea, Visiana y Vuno, demostraron una excelente correlación con el estándar de referencia, logrando coeficientes de correlación r de 0,987-0,989 (donde 1 indica una concordancia perfecta). En el análisis de nódulos pulmonares, hubo una variación más significativa en el desempeño, con lectores humanos que promediaron un área bajo la curva (AUC) de 0,81. Los algoritmos de IA de Annalise.ai, Lunit, Milvue y Oxipit mostraron un desempeño superior, con AUC de 0,90, 0,93, 0,86 y 0,88, respectivamente. Las próximas pruebas del concepto Project AIR se centrarán en algoritmos de IA para la detección de fracturas.

"Hemos demostrado la viabilidad de la metodología de Project AIR para la validación externa de productos comerciales de inteligencia artificial (IA) en imágenes médicas", señalaron los investigadores. "Es concebible que en el futuro, los departamentos de radiología exijan a los proveedores que participen en evaluaciones comparativas y transparentes como requisito previo a la compra de productos de IA".

Enlaces relacionados:
Universidad de Radboud

X-Ray Illuminator
X-Ray Viewbox Illuminators
New
Radiation Shielding
Oversize Thyroid Shield
Radiation Therapy Treatment Software Application
Elekta ONE
Ultrasonic Pocket Doppler
SD1

Print article

Canales

RM

ver canal
Imagen: Comparación que muestra exploraciones 3T y 7T para el mismo participante (foto cortesía de P Simon Jones/University of Cambridge)

Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento

Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más

Medicina Nuclear

ver canal
Imágenes PET/TC con 68Ga-FZ-NR-1 e imágenes PET/TC y PET/RM con 18F-FDG en pacientes representativos con TNBC con nectina-4 positiva (foto cortesía del Journal of Nuclear Medicine)

Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo

El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más

Imaginología General

ver canal
Imágenes axiales de ventana pulmonar de TC de tórax sin contraste de tres parches de muestra diferentes que se muestran en cada fila (Foto cortesía de Radiology: Cardiothoracic Imaging)

TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos

Las infecciones pulmonares pueden poner en peligro la vida de los pacientes con sistemas inmunitarios debilitados, por lo que el diagnóstico oportuno es crucial. Si bien las tomografías computarizadas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.