Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA ayuda a radiólogos generales a lograr un rendimiento de nivel de especialista en interpretación de mamografías

Por el equipo editorial de MedImaging en español
Actualizado el 13 Mar 2024
Print article
Imagen: Saige-DX es un sistema de IA categórico personalizado diseñado para ayudar en la detección del cáncer de mama (Fotografía cortesía de DeepHealth)
Imagen: Saige-DX es un sistema de IA categórico personalizado diseñado para ayudar en la detección del cáncer de mama (Fotografía cortesía de DeepHealth)

El cáncer de mama, que afecta a una de cada ocho mujeres a lo largo de su vida, se vuelve mucho más tratable cuando se detecta a tiempo. La tasa de supervivencia relativa a cinco años para el cáncer de mama en etapa 1 es un alentador 99 %, lo que destaca la importancia de la detección temprana. Ahora, una investigación innovadora revela que una tecnología avanzada de inteligencia artificial (IA), diseñada para mamografía, puede mejorar significativamente la detección y el diagnóstico tempranos del cáncer de mama al permitir que los radiólogos generales se desempeñen al nivel de los especialistas.

Saige-Dx de DeepHealth (Los Ángeles, CA, EUA) es un sistema de IA categórico personalizado que detecta automáticamente lesiones sospechosas en mamografías, asignando un nivel de sospecha a cada hallazgo y al caso completo. En un estudio fundamental realizado por DeepHealth, se evaluaron las habilidades interpretativas de 18 médicos, incluidos especialistas en mama y radiólogos generales. Los investigadores analizaron 240 tomosíntesis digitales de mama recopiladas retrospectivamente en busca de indicadores de cáncer. Al utilizar Saige-DX, cada radiólogo demostró una capacidad mejorada para interpretar mamografías. Su precisión diagnóstica promedio, medida por el área bajo la curva característica operativa del receptor, mejoró de 0,87 a 0,93 con la ayuda de la IA.

La mejora fue significativa en ambos grupos de radiólogos: los radiólogos generales agregaron 0,08 a su puntuación de precisión y los especialistas mejoraron en 0,05. Este rendimiento mejorado fue consistente en diversas características del cáncer, como el tipo y tamaño de la lesión, y en todos los subgrupos de pacientes, incluidas diferentes razas y etnias, edades y densidades mamarias. Los investigadores atribuyen este éxito al diseño del sistema de IA, que aborda específicamente casos desafiantes. El algoritmo se entrenó utilizando un conjunto de datos que incluía cánceres que los radiólogos previamente habían pasado por alto en entornos clínicos. Además, el uso mínimo de "cuadros delimitadores" por parte de Saige-Dx para marcar imágenes de mama probablemente evitó que los radiólogos se sintieran abrumados por marcas excesivas, un problema común con herramientas de diagnóstico asistido por computadora menos precisas.

"El rendimiento medio de los radiólogos generales con IA superó al de los especialistas en imágenes mamarias sin ayuda de IA, lo que sugiere que el software de IA podría ayudar a las pacientes a recibir interpretaciones de nivel de especialista para su mamografía de detección, incluso si las interpreta un radiólogo general", señalaron los investigadores. "Los beneficios del uso de la IA no se limitan a los radiólogos generales, ya que los especialistas también mostraron un mejor rendimiento".

"En conclusión, nuestros resultados muestran que los radiólogos generales pueden lograr un desempeño de nivel de especialista al interpretar mamografías de detección DBT con la ayuda de IA y que los especialistas pueden lograr un desempeño aún mayor (mayor sensibilidad y especificidad) en una población diversa con múltiples tipos de cáncer", afirmó Jiye G. Kim, PhD, directora de estudios clínicos de DeepHealth.

NMUS & MSK Ultrasound
InVisus Pro
New
X-Ray Illuminator
X-Ray Viewbox Illuminators
New
Ultrasound Probe Disinfection Solution
UltrOx
New
Digital Radiography System
DigiEye 680

Print article

Canales

Ultrasonido

ver canal
Imagen: El nuevo método para combatir el cáncer puede estimular la secreción de citocinas críticas en las células T

Microburbujas dirigidas por ultrasonidos potencian la respuesta inmunitaria contra los tumores

Un desafío importante en el tratamiento del cáncer es la capacidad del tumor para suprimir el sistema inmunológico, en particular desactivando las células T que ingresan al tumor. Una vez dentro, el tumor... Más

Medicina Nuclear

ver canal
Imagen: La combinación de imágenes avanzadas permitió a los investigadores determinar las regiones metabólicamente más activas o agresivas del glioblastoma (Foto cortesía de Mayo Clinic)

Una combinación de tecnologías de imágenes avanzadas ofrece un avance en el tratamiento del glioblastoma

El glioblastoma es la forma más mortal de cáncer cerebral primario, en gran medida debido a su crecimiento agresivo y su resistencia al tratamiento. El tumor se infiltra en el tejido cerebral... Más

Imaginología General

ver canal
Imagen: La IA se puede utilizar para identificar diferentes segmentos cardíacos en una tomografía computarizada (foto cortesía de Sadeer al-Kindi/ Houston Methodist)

La IA predice el riesgo cardiovascular a partir de tomografías computarizadas

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en todo el mundo y se cobran más de 17 millones de vidas al año. Identificar a las personas con alto riesgo es... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: La colonoscopia virtual (colonografía por TC) es una opción aprobada para la detección del cáncer colorrectal en los EUA (Foto cortesía de Shtutterstock)

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

En los últimos 25 años, la colonoscopia virtual ha demostrado ser un método altamente preciso, seguro, conveniente y rentable para la prevención y detección del cáncer... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.