Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Aprendizaje profundo detecta fracturas en imágenes de rayos X con una precisión del 99%

Por el equipo editorial de MedImaging en español
Actualizado el 08 May 2024
Imagen: el aprendizaje profundo permite decisiones más rápidas y precisas sobre el tratamiento de anormalidades de los hombros (foto cortesía de 123RF)
Imagen: el aprendizaje profundo permite decisiones más rápidas y precisas sobre el tratamiento de anormalidades de los hombros (foto cortesía de 123RF)

En todo el mundo, 1.700 millones de personas padecen afecciones musculoesqueléticas que pueden causar dolor y discapacidad importantes. Estas condiciones a menudo requieren decisiones de diagnóstico y tratamiento rápidas y precisas, particularmente en escenarios de emergencia. Aunque se han explorado tecnologías de aprendizaje profundo para ayudar en la toma de decisiones médicas, problemas como el bajo rendimiento y la opacidad han obstaculizado su eficacia para identificar problemas relacionados con el hombro, como fracturas, artritis o deformidades en imágenes de rayos X. Ahora, los científicos han creado un marco de aprendizaje profundo que puede identificar anomalías del hombro, como fracturas, en imágenes de rayos X con una notable precisión del 99%, ayudando a los médicos a tomar decisiones rápidas y precisas durante las emergencias.

Para construir el marco de aprendizaje profundo, los científicos de la Universidad Tecnológica de Queensland (QUT, Brisbane, Australia) emplearon una técnica de fusión de características que combina características derivadas de siete modelos neuronales profundos. El éxito de las técnicas de clasificación basadas en el aprendizaje automático depende en gran medida de características totalmente descriptivas para diferenciar con precisión varias clases. La técnica de fusión de características mejora los resultados de los modelos individuales al proporcionar una descripción completa de los datos internos, lo que da como resultado una representación compacta de las características fusionadas y, por lo tanto, mejora la precisión del diagnóstico de la tarea.

Al entrenar y evaluar individualmente siete redes neuronales convolucionales profundas para la extracción de características, los investigadores pudieron fusionar estas características extraídas en un conjunto de datos unificado para entrenar clasificadores de aprendizaje automático. Este marco propuesto logró una asombrosa tasa de precisión del 99,2 %, superando tanto a los métodos computacionales anteriores como a la precisión diagnóstica de los médicos humanos, incluidos los cirujanos ortopédicos y radiólogos, que lograron una tasa de precisión del 79 %.

"El marco propuesto ha sido validado frente a varios sesgos potenciales para garantizar una toma de decisiones confiable", dijo el coinvestigador profesor YuanTong Gu de la QUT, vicerrector adjunto y director de la Escuela de Ingeniería Mecánica, Médica y de Procesos de QUT. "Esta herramienta puede proporcionar decisiones en tiempo real, lo cual es crucial para un problema de este tipo".

Enlaces relacionados:
Universidad Tecnológica de Queensland

High-Precision QA Tool
DEXA Phantom
Diagnostic Ultrasound System
DC-80A
Portable X-ray Unit
AJEX140H
Ultrasound Needle Guidance System
SonoSite L25

Canales

Ultrasonido

ver canal
Imagen: el parche de ultrasonido realiza simultáneamente imágenes de ultrasonido y medición de la presión arterial de ambas arterias carótidas (Fotografía cortesía de KIST)

Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes

Los dispositivos portátiles de ultrasonido se utilizan ampliamente en el diagnóstico, el monitoreo de la rehabilitación y la telemedicina. Sin embargo, la mayoría de los modelos... Más

Medicina Nuclear

ver canal
Imagen: el Dr. Glenn Bauman, científico de LHSCRI, posa frente al escáner PET (Foto cortesía de LHSCRI).

Nueva solución de imagen mejora la supervivencia de los pacientes con cáncer de próstata recurrente

La detección del cáncer de próstata recurrente sigue siendo uno de los mayores desafíos en oncología, ya que los métodos de imagen estándar, como las g... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.