Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Asistencia de IA mejora detección del cáncer de mama al reducir los falsos positivos

Por el equipo editorial de MedImaging en español
Actualizado el 20 May 2024
Print article
Imagen: La detección de cáncer de seno asistido por AI puede reducir las pruebas innecesarias (foto cortesía de Wustl)
Imagen: La detección de cáncer de seno asistido por AI puede reducir las pruebas innecesarias (foto cortesía de Wustl)

Radiólogos suelen detectar un caso de cáncer por cada 200 mamografías revisadas. Sin embargo, estas evaluaciones a menudo dan como resultado falsos positivos, lo que lleva a retiros innecesarios de los pacientes para pruebas adicionales, lo que no solo causa ansiedad en el paciente sino que también consume valiosos recursos médicos. Ahora, un nuevo estudio ha demostrado cómo la inteligencia artificial (IA) puede mejorar la precisión de la detección del cáncer de mama al minimizar estos falsos positivos sin perder los verdaderos positivos.

El estudio realizado por investigadores de la Facultad de Medicina de la Universidad de Washington en St. Louis (St. Louis, MO, EUA) y Whiterabbit.ai (Santa Clara, CA, EUA) se basa en su colaboración anterior para el desarrollo de un algoritmo de IA para ayudar a los radiólogos a evaluar la densidad mamaria en mamografías e identificar a las personas que podrían beneficiarse de exámenes de detección adicionales o alternativos. Whiterabbit.ai comercializa ese algoritmo como WRDensity después de recibir la autorización de la Administración de Alimentos y Medicamentos (FDA) en 2020.

En el estudio actual, el equipo desarrolló un algoritmo para identificar mamografías normales con una sensibilidad extremadamente alta. Luego realizaron una simulación con datos de pacientes para ver qué habría pasado si todas las mamografías de muy bajo riesgo se hubieran retirado de las placas de los radiólogos, permitiendo a los médicos centrarse en las exploraciones más cuestionables. Los resultados de esta simulación indicaron que tal enfoque reduciría la cantidad de llamadas innecesarias de pacientes para pruebas adicionales, pero mantendría la misma tasa de detección de cáncer.

"Al final del día, creemos en un mundo donde el médico es el superhéroe que encuentra el cáncer y ayuda a los pacientes a recorrer el camino que les espera", dijo Jason Su, cofundador y director de tecnología de Whiterabbit.ai. “La forma en que los sistemas de IA pueden ayudar es desempeñando un papel de apoyo. Al evaluar con precisión los aspectos negativos, puede ayudar a retirar el heno del pajar para que los médicos puedan encontrar la aguja más fácilmente. Este estudio demuestra que la IA puede ser potencialmente muy precisa a la hora de identificar exámenes negativos. Más importante aún, los resultados mostraron que automatizar la detección de negativos también puede generar un enorme beneficio en la reducción de falsos positivos sin cambiar la tasa de detección de cáncer”.

Enlaces relacionados:
WUSTL
Conejo Blanco.ai

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Portable Color Doppler Ultrasound Scanner
DCU10
New
Doppler String Phantom
CIRS Model 043A
New
Ultrasound Scanner
TBP-5533

Print article
Radcal

Canales

RM

ver canal
Imagen: Imágenes por RM antígeno de membrana específico de próstata, PET-CT, y tinción con hematoxilina y eosina de tres casos representativos (foto cortesía del profesor Nianzeng Xing. Doi: 10.1097/cm9.0000000000003204)

Combinación de técnicas de imagen permitiría extirpar el cáncer de próstata sin biopsia

El cáncer de próstata es uno de los cánceres más frecuentes en los hombres. Tradicionalmente, el cáncer de próstata se diagnostica mediante una biopsia, en la que se obtiene una pequeña muestra de tejido... Más

Ultrasonido

ver canal
Imagen: un prototipo del dispositivo desarrollado (foto cortesía de KTU)

Dispositivo de ultrasonido mejora de forma no invasiva la circulación sanguínea en las extremidades inferiores

La circulación sanguínea deficiente en las extremidades inferiores es un problema de salud común entre los ancianos y es una complicación significativa de la diabetes, a menudo... Más

Medicina Nuclear

ver canal
Imagen: Ejemplo de análisis de IA de imágenes PET/TC (foto cortesía de Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

Análisis de IA de imágenes PET/TC predice efectos secundarios de la inmunoterapia en cáncer de pulmón

La inmunoterapia ha avanzado significativamente en el tratamiento del cáncer de pulmón primario, pero a veces puede provocar un efecto secundario grave conocido como enfermedad pulmonar intersticial.... Más

Imaginología General

ver canal
Imagen: Cleerly ofrece una solución CCTA habilitada para AI para una evaluación personalizada, precisa y medible de placa, estenosis e isquemia (foto cortesía de Cleerly)

Evaluaciones de placas habilitadas por IA ayudan a cardiólogos a identificar a pacientes con EAC de alto riesgo

Una investigación pionera ha demostrado que un análisis no invasivo basado en inteligencia artificial (IA) de la tomografía computarizada (TC) cardíaca puede predecir eventos cardíacos graves en pacientes... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.