Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Técnica de inteligencia artificial identifica casos de tuberculosis

Por el equipo editorial de MedImaging en español
Actualizado el 09 May 2017
Print article
Imagen: Una radiografía de tórax de un paciente con TB activa, y una radiografía con una superposición de mapa de calor que muestra algunos de los resultados del análisis usando la inteligencia artificial (Fotografía cortesía de la RSNA).
Imagen: Una radiografía de tórax de un paciente con TB activa, y una radiografía con una superposición de mapa de calor que muestra algunos de los resultados del análisis usando la inteligencia artificial (Fotografía cortesía de la RSNA).
Los investigadores han encontrado que pueden utilizar una técnica de inteligencia artificial, llamada aprendizaje profundo, para identificar casos de tuberculosis en los exámenes de rayos X de tórax con una tasa de exactitud neta de 96%.
 
Según la Organización Mundial de la Salud (OMS), alrededor de 1,8 millones de personas murieron de tuberculosis en 2016. Un simple examen radiológico de tórax puede ayudar a los radiólogos a identificar la enfermedad, pero muchos pacientes de tuberculosis viven en áreas remotas sin acceso a radiólogos expertos, que puedan interpretar las imágenes, y diagnosticar la enfermedad.
 
El estudio fue realizado por investigadores del Hospital Universitario Thomas Jefferson (TJUH, Filadelfia, PA, EUA), quienes entrenaron modelos de inteligencia artificial para identificar la TB en las radiografías de tórax. El objetivo de la investigación fue ayudar a la detección y evaluación de pacientes en áreas prevalentes de TB, que carecen de acceso a radiólogos. El estudio fue publicado en la edición digital del 25 de abril de 2017, de la revista Radiology.
 
Los investigadores usaron 1.007 exámenes de rayos X, de pacientes con y sin TB activa, para el estudio. Los conjuntos de datos múltiples de rayos X positivos para la TB y negativos para la TB, fueron usados para entrenar dos modelos diferentes de una Red Neural Convulsionada Profunda (DCNN, por sus siglas en inglés) llamados AlexNet y GoogLeNet. Los investigadores descubrieron que el modelo de Inteligencia Artificial (IA) de mejor desempeño fue cuando se usaron juntos AlexNet y GoogLeNet, lo que dio como resultado una exactitud neta del 96%.
 
El coautor del estudio, Paras Lakhani, MD en el TJUH, dijo: “Hay un tremendo interés en la inteligencia artificial, tanto dentro como fuera del campo de la medicina. Una solución de inteligencia artificial que pudiera interpretar las radiografías para detectar la presencia de TB de una manera rentable podría ampliar el alcance de la identificación y el tratamiento temprano en las naciones en desarrollo. La exactitud de los modelos de aprendizaje profundo es emocionante. La aplicabilidad para la TB es importante porque es una enfermedad para la cual tenemos opciones de tratamiento. Esperamos aplicarlo de forma prospectiva, en un entorno real. Una solución de inteligencia artificial que utiliza imágenes de tórax puede desempeñar un papel importante en la lucha contra la tuberculosis”.
 
Diagnostic Ultrasound System
MS1700C
New
Ultrasound Needle Guide
Ultra-Pro 3
Miembro Plata
X-Ray QA Meter
T3 AD Pro
Radiation Therapy Treatment Software Application
Elekta ONE

Print article

Canales

Radiografía

ver canal
Imagen: un estudio ha vinculado un mayor uso de radiografías de tórax con un diagnóstico más temprano del cáncer de pulmón y una mejor supervivencia (foto cortesía de 123RF)

Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas

El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más

RM

ver canal
Imagen: Comparación que muestra exploraciones 3T y 7T para el mismo participante (foto cortesía de P Simon Jones/University of Cambridge)

Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento

Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más

Ultrasonido

ver canal
Imagen: La sonda universal Vave (Foto cortesía de Vave Health)

El primer ultrasonido inalámbrico, portátil y de cuerpo entero con un solo transductor PZT

Los dispositivos de ultrasonido desempeñan un papel vital en el campo de la medicina, utilizándose rutinariamente para examinar los tejidos y estructuras internas del cuerpo. Si bien los avances han mejorado... Más

Medicina Nuclear

ver canal
Imágenes PET/TC con 68Ga-FZ-NR-1 e imágenes PET/TC y PET/RM con 18F-FDG en pacientes representativos con TNBC con nectina-4 positiva (foto cortesía del Journal of Nuclear Medicine)

Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo

El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más

Imaginología General

ver canal
Imágenes axiales de ventana pulmonar de TC de tórax sin contraste de tres parches de muestra diferentes que se muestran en cada fila (Foto cortesía de Radiology: Cardiothoracic Imaging)

TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos

Las infecciones pulmonares pueden poner en peligro la vida de los pacientes con sistemas inmunitarios debilitados, por lo que el diagnóstico oportuno es crucial. Si bien las tomografías computarizadas... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.