Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de aprendizaje automático utiliza datos de resonancia magnética para identificar candidatos para trasplante de hígado

Por el equipo editorial de MedImaging en español
Actualizado el 23 Aug 2022

La recurrencia posterior al tratamiento es una complicación impredecible después del trasplante de hígado por carcinoma hepatocelular (CHC), que se asocia con una supervivencia deficiente. Se necesitan biomarcadores para estimar el riesgo de recurrencia antes de la asignación de órganos. Un nuevo estudio ha encontrado que los modelos de aprendizaje automático (ML) aplicados a las características de imágenes actualmente infrautilizadas podrían ayudar a construir criterios más confiables para la asignación de órganos y la elegibilidad para trasplantes de hígado.

En el estudio de prueba de concepto, los investigadores de la Facultad de Medicina de la Universidad de Yale (New Haven, CT, EUA) evaluaron el uso de (ML para predecir la recurrencia a partir de datos de laboratorio, clínicos y de resonancia magnética previos al tratamiento en pacientes con CHC en etapa temprana inicialmente elegibles para trasplante de hígado. El estudio incluyó a 120 pacientes (88 hombres, 32 mujeres; mediana de edad, 60 años) diagnosticados con CHC en etapa temprana entre junio de 2005 y marzo de 2018, que inicialmente eran elegibles para trasplante de hígado y se sometieron a tratamiento mediante trasplante, resección o ablación térmica. Los pacientes se sometieron a una resonancia magnética previa al tratamiento y a la vigilancia por imágenes posterior al tratamiento, y las características de las imágenes se extrajeron de las fases posteriores al contraste de los exámenes de resonancia magnética previa al tratamiento utilizando una red neuronal convolucional preentrenada (VGG-16). Las características previas al tratamiento (incluyendo los datos de laboratorio) y las características de imágenes extraídas se integraron para desarrollar tres modelos de aprendizaje automático (clínico, de imágenes, combinado) para la predicción de recurrencia dentro de 1 a 6 años después del tratamiento.

En última instancia, los tres modelos predijeron la recurrencia posterior al tratamiento para el CHC en etapa temprana de la clínica previa al tratamiento (AUC 0,60–0,78, en los seis marcos de tiempo), resonancia magnética (AUC 0,71–0,85) y ambos datos combinados (AUC 0,62–0,86). El uso de datos de imágenes como la única entrada del modelo produjo un mayor rendimiento predictivo que los datos clínicos solos; sin embargo, la combinación de ambos tipos de datos no mejoró significativamente el rendimiento con respecto al uso exclusivo de datos de imágenes.

"Los hallazgos sugieren que los modelos basados en el aprendizaje automático pueden predecir la recurrencia antes de la asignación de la terapia en pacientes con CHC en etapa temprana inicialmente elegibles para un trasplante de hígado", escribió el autor correspondiente Julius Chapiro del departamento de radiología e imágenes biomédicas de la Facultad de Medicina de la Universidad de Yale.

Enlaces relacionados:

Facultad de Medicina de la Universidad de Yale

Radiology Software
DxWorks
Ultrasound Imaging System
P12 Elite
Ultra-Flat DR Detector
meX+1717SCC
Digital Radiographic System
OMNERA 300M
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

Medicina Nuclear

ver canal
Imágenes PET/TC con 68Ga-FZ-NR-1 e imágenes PET/TC y PET/RM con 18F-FDG en pacientes representativos con TNBC con nectina-4 positiva (foto cortesía del Journal of Nuclear Medicine)

Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo

El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.