Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo basado en resonancia magnética predice con precisión patologías de columna

Por el equipo editorial de MedImaging en español
Actualizado el 17 Oct 2023

Existen varios tipos de patologías de la columna, que van desde traumatismos y enfermedades degenerativas hasta infecciones, neoplasias, afecciones inflamatorias y tumores. Por lo tanto, la evaluación clínica a menudo se basa en pruebas de laboratorio y estudios de imágenes para guiar el diagnóstico y las decisiones de tratamiento. Aunque la biopsia es el método definitivo de diagnóstico, es invasiva y costosa. Ahora, un nuevo estudio ha revelado que un algoritmo de aprendizaje profundo que utiliza exploraciones por resonancia magnética puede distinguir eficazmente entre diferentes tipos de patologías de la columna. El estudio mostró que la precisión del algoritmo fue moderada para el grupo de validación pero alta para el grupo de prueba.

Investigadores del Centro Médico de Tel Aviv (Tel Aviv, Israel) construyeron el algoritmo de aprendizaje profundo en el marco Fast.ai sobre el entorno PyTorch y utilizan datos de resonancia magnética previos a la cirugía y hallazgos patológicos posoperatorios para sus evaluaciones. Los datos utilizados para el entrenamiento y la validación se organizaron en un formato de validación cruzada quíntuple. El estudio examinó datos de resonancia magnética de 231 pacientes que tenían diferentes patologías de la columna: carcinoma, infección, meningioma y schwannoma. La investigación indicó que el algoritmo logró una precisión promedio de 0,78 en el conjunto de validación y 0,93 en el conjunto de prueba.

Si bien los investigadores admiten que el algoritmo no es tan preciso como los informes de patología tradicionales, lo ven como una herramienta prometedora para el diagnóstico oportuno de afecciones de la columna. Potencialmente, podría reducir la necesidad de procedimientos más riesgosos e invasivos, como las biopsias. Sugieren que las investigaciones futuras deberían centrarse en integrar conjuntos de datos de pacientes más grandes y diversos para evaluar la aplicabilidad más amplia del algoritmo. También destacaron la necesidad de estudios adicionales para explorar la viabilidad de utilizar métodos de aprendizaje profundo para identificar patologías de la columna mediante resonancia magnética.

"Aunque se basa en una cohorte segregada relativamente pequeña, este estudio representa el poder de las herramientas de aprendizaje profundo en la predicción de patologías de la columna y sienta las bases para desarrollar algoritmos basados en el aprendizaje profundo para este propósito", escribieron los autores.

Enlaces relacionados:
Centro Médico de Tel Aviv

Wall Fixtures
MRI SERIES
MRI System
Ingenia Prodiva 1.5T CS
New
Mobile Cath Lab
Photon F65/F80
New
Radiation Shielding
Oversize Thyroid Shield
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Radiografía

ver canal
Imagen: Sistema de imágenes de rayos X en color y contraste de fases utilizado en la investigación (Foto cortesía de la Universidad de Houston)

Los detectores de conteo de fotones prometen imágenes rápidas de rayos X en color

Durante muchos años, los profesionales de la salud han dependido de las radiografías 2D tradicionales para diagnosticar fracturas óseas comunes, aunque a menudo pueden pasarse por... Más

Ultrasonido

ver canal
Imagen: el modelo entrenado en ecocardiografía, puede identificar enfermedades hepáticas en personas asintomáticas (foto cortesía de 123RF)

Inteligencia artificial detecta enfermedad hepática mediante ecocardiogramas

La ecocardiografía es un procedimiento de diagnóstico que utiliza ultrasonidos para visualizar el corazón y sus estructuras asociadas. Esta prueba de diagnóstico por imágenes... Más

Medicina Nuclear

ver canal
Imagen: un fármaco reutilizado para la ELA se ha convertido en una sonda de imágenes para ayudar a diagnosticar la neurodegeneración (Foto cortesía de St. Jude Children’s Research Hospital)

Técnica innovadora de imágenes PET ayuda a diagnosticar la neurodegeneración

Las enfermedades neurodegenerativas, como la esclerosis lateral amiotrófica (ELA) y la enfermedad de Alzheimer, suelen diagnosticarse solo después de que aparecen los síntomas físicos,... Más

Imaginología General

ver canal
Imagen: Casos de cáncer de pulmón confirmados histológicamente detectados en referencia inmediata espués de una exploración inicial o un seguimiento a corto plazo de 3 meses. (Foto cortesía de DOI: 10.1016/j.ejca.2025.115324)

La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.

El cáncer de pulmón afecta a más de 48.000 personas en el Reino Unido cada año, y la detección temprana es clave para mejorar las tasas de supervivencia.... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.